These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
575 related articles for article (PubMed ID: 20093537)
21. Pulmonary nodules: Preliminary experience with semiautomated volumetric evaluation by CT stratum. Sone S; Tsushima K; Yoshida K; Hamanaka K; Hanaoka T; Kondo R Acad Radiol; 2010 Jul; 17(7):900-11. PubMed ID: 20447841 [TBL] [Abstract][Full Text] [Related]
22. A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification. Murphy K; van Ginneken B; Schilham AM; de Hoop BJ; Gietema HA; Prokop M Med Image Anal; 2009 Oct; 13(5):757-70. PubMed ID: 19646913 [TBL] [Abstract][Full Text] [Related]
23. How can a massive training artificial neural network (MTANN) be trained with a small number of cases in the distinction between nodules and vessels in thoracic CT? Suzuki K; Doi K Acad Radiol; 2005 Oct; 12(10):1333-41. PubMed ID: 16179210 [TBL] [Abstract][Full Text] [Related]
24. A phantom study of nodule size evaluation with chest tomosynthesis and computed tomography. Johnsson AA; Svalkvist A; Vikgren J; Boijsen M; Flinck A; Kheddache S; Båth M Radiat Prot Dosimetry; 2010; 139(1-3):140-3. PubMed ID: 20133329 [TBL] [Abstract][Full Text] [Related]
25. On measuring the change in size of pulmonary nodules. Reeves AP; Chan AB; Yankelevitz DF; Henschke CI; Kressler B; Kostis WJ IEEE Trans Med Imaging; 2006 Apr; 25(4):435-50. PubMed ID: 16608059 [TBL] [Abstract][Full Text] [Related]
26. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. Suzuki K; Li F; Sone S; Doi K IEEE Trans Med Imaging; 2005 Sep; 24(9):1138-50. PubMed ID: 16156352 [TBL] [Abstract][Full Text] [Related]
27. Characterization of radiologists' search strategies for lung nodule detection: slice-based versus volumetric displays. Wang XH; Durick JE; Lu A; Herbert DL; Golla SK; Foley K; Piracha CS; Shinde DD; Shindel BE; Fuhrman CR; Britton CA; Strollo DC; Shang SS; Lacomis JM; Good WF J Digit Imaging; 2008 Oct; 21 Suppl 1(Suppl 1):S39-49. PubMed ID: 17874330 [TBL] [Abstract][Full Text] [Related]
28. Pulmonary nodules: sensitivity of maximum intensity projection versus that of volume rendering of 3D multidetector CT data. Peloschek P; Sailer J; Weber M; Herold CJ; Prokop M; Schaefer-Prokop C Radiology; 2007 May; 243(2):561-9. PubMed ID: 17456878 [TBL] [Abstract][Full Text] [Related]
29. Computer-aided differentiation of malignant from benign solitary pulmonary nodules imaged by high-resolution CT. Iwano S; Nakamura T; Kamioka Y; Ikeda M; Ishigaki T Comput Med Imaging Graph; 2008 Jul; 32(5):416-22. PubMed ID: 18501556 [TBL] [Abstract][Full Text] [Related]
30. Benefit of overlapping reconstruction for improving the quantitative assessment of CT lung nodule volume. Gavrielides MA; Zeng R; Myers KJ; Sahiner B; Petrick N Acad Radiol; 2013 Feb; 20(2):173-80. PubMed ID: 23085408 [TBL] [Abstract][Full Text] [Related]
31. Registration of lung nodules using a semi-rigid model: method and preliminary results. Sun S; Rubin GD; Paik D; Steiner RM; Zhuge F; Napel S Med Phys; 2007 Feb; 34(2):613-26. PubMed ID: 17388179 [TBL] [Abstract][Full Text] [Related]
32. Refinement of lung nodule candidates based on local geometric shape analysis and Laplacian of Gaussian kernels. Saien S; Hamid Pilevar A; Abrishami Moghaddam H Comput Biol Med; 2014 Nov; 54():188-98. PubMed ID: 25303113 [TBL] [Abstract][Full Text] [Related]
33. Pulmonary nodule registration in serial CT scans based on rib anatomy and nodule template matching. Shi J; Sahiner B; Chan HP; Hadjiiski L; Zhou C; Cascade PN; Bogot N; Kazerooni EA; Wu YT; Wei J Med Phys; 2007 Apr; 34(4):1336-47. PubMed ID: 17500464 [TBL] [Abstract][Full Text] [Related]
34. Computer-aided detection of lung nodules by SVM based on 3D matrix patterns. Wang Q; Kang W; Wu C; Wang B Clin Imaging; 2013; 37(1):62-9. PubMed ID: 23206609 [TBL] [Abstract][Full Text] [Related]
35. A computer-aided diagnosis system for detection of lung nodules in chest radiographs with an evaluation on a public database. Schilham AM; van Ginneken B; Loog M Med Image Anal; 2006 Apr; 10(2):247-58. PubMed ID: 16293441 [TBL] [Abstract][Full Text] [Related]
36. Computer-aided diagnosis of lung nodules on CT scans: ROC study of its effect on radiologists' performance. Way T; Chan HP; Hadjiiski L; Sahiner B; Chughtai A; Song TK; Poopat C; Stojanovska J; Frank L; Attili A; Bogot N; Cascade PN; Kazerooni EA Acad Radiol; 2010 Mar; 17(3):323-32. PubMed ID: 20152726 [TBL] [Abstract][Full Text] [Related]
37. Doubling time calculations for lung cancer by three-dimensional computer-aided volumetry: effects of inter-observer differences and nodule characteristics. Koike W; Iwano S; Matsuo K; Kitano M; Kawakami K; Naganawa S J Med Imaging Radiat Oncol; 2014 Feb; 58(1):82-8. PubMed ID: 24304703 [TBL] [Abstract][Full Text] [Related]
38. Robust pulmonary nodule segmentation in CT: improving performance for juxtapleural cases. Okada K; Ramesh V; Krishnan A; Singh M; Akdemir U Med Image Comput Comput Assist Interv; 2005; 8(Pt 2):781-9. PubMed ID: 16686031 [TBL] [Abstract][Full Text] [Related]
39. Comparison of 1D, 2D, and 3D nodule sizing methods by radiologists for spherical and complex nodules on thoracic CT phantom images. Petrick N; Kim HJ; Clunie D; Borradaile K; Ford R; Zeng R; Gavrielides MA; McNitt-Gray MF; Lu ZQ; Fenimore C; Zhao B; Buckler AJ Acad Radiol; 2014 Jan; 21(1):30-40. PubMed ID: 24331262 [TBL] [Abstract][Full Text] [Related]
40. Left atrial size: when an imperfect measurement may be close enough. Entrikin DW J Cardiovasc Comput Tomogr; 2010; 4(1):55-7. PubMed ID: 20159630 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]