These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
659 related articles for article (PubMed ID: 20094685)
1. Quantitative analysis of Poisson-Boltzmann implicit solvent in molecular dynamics. Wang J; Tan C; Chanco E; Luo R Phys Chem Chem Phys; 2010 Feb; 12(5):1194-202. PubMed ID: 20094685 [TBL] [Abstract][Full Text] [Related]
2. How well does Poisson-Boltzmann implicit solvent agree with explicit solvent? A quantitative analysis. Tan C; Yang L; Luo R J Phys Chem B; 2006 Sep; 110(37):18680-7. PubMed ID: 16970499 [TBL] [Abstract][Full Text] [Related]
3. Free energy landscape of protein folding in water: explicit vs. implicit solvent. Zhou R Proteins; 2003 Nov; 53(2):148-61. PubMed ID: 14517967 [TBL] [Abstract][Full Text] [Related]
4. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials. Hassan SA; Mehler EL; Zhang D; Weinstein H Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of Poisson solvation models using a hybrid explicit/implicit solvent method. Lee MS; Olson MA J Phys Chem B; 2005 Mar; 109(11):5223-36. PubMed ID: 16863188 [TBL] [Abstract][Full Text] [Related]
6. Structure and dynamics of end-to-end loop formation of the penta-peptide Cys-Ala-Gly-Gln-Trp in implicit solvents. Yeh IC; Wallqvist A J Phys Chem B; 2009 Sep; 113(36):12382-90. PubMed ID: 19685925 [TBL] [Abstract][Full Text] [Related]
7. Free energy determinants of secondary structure formation: I. alpha-Helices. Yang AS; Honig B J Mol Biol; 1995 Sep; 252(3):351-65. PubMed ID: 7563056 [TBL] [Abstract][Full Text] [Related]
8. Direct observation of salt effects on molecular interactions through explicit-solvent molecular dynamics simulations: differential effects on electrostatic and hydrophobic interactions and comparisons to Poisson-Boltzmann theory. Thomas AS; Elcock AH J Am Chem Soc; 2006 Jun; 128(24):7796-806. PubMed ID: 16771493 [TBL] [Abstract][Full Text] [Related]
9. A solvent model for simulations of peptides in bilayers. II. Membrane-spanning alpha-helices. Efremov RG; Nolde DE; Vergoten G; Arseniev AS Biophys J; 1999 May; 76(5):2460-71. PubMed ID: 10233063 [TBL] [Abstract][Full Text] [Related]
10. Computational study of the free energy landscape of the miniprotein CLN025 in explicit and implicit solvent. Rodriguez A; Mokoema P; Corcho F; Bisetty K; Perez JJ J Phys Chem B; 2011 Feb; 115(6):1440-9. PubMed ID: 21254763 [TBL] [Abstract][Full Text] [Related]
11. Modeling loop reorganization free energies of acetylcholinesterase: a comparison of explicit and implicit solvent models. Olson MA Proteins; 2004 Dec; 57(4):645-50. PubMed ID: 15481087 [TBL] [Abstract][Full Text] [Related]
12. Anti-cooperativity and cooperativity in hydrophobic interactions: Three-body free energy landscapes and comparison with implicit-solvent potential functions for proteins. Shimizu S; Chan HS Proteins; 2002 Jul; 48(1):15-30. PubMed ID: 12012334 [TBL] [Abstract][Full Text] [Related]
13. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model. Vorobjev YN; Almagro JC; Hermans J Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412 [TBL] [Abstract][Full Text] [Related]
14. Free energy surfaces of beta-hairpin and alpha-helical peptides generated by replica exchange molecular dynamics with the AGBNP implicit solvent model. Felts AK; Harano Y; Gallicchio E; Levy RM Proteins; 2004 Aug; 56(2):310-21. PubMed ID: 15211514 [TBL] [Abstract][Full Text] [Related]
15. Local order, energy, and mobility of water molecules in the hydration shell of small peptides. Agarwal M; Kushwaha HR; Chakravarty C J Phys Chem B; 2010 Jan; 114(1):651-9. PubMed ID: 19863091 [TBL] [Abstract][Full Text] [Related]
16. Implicit nonpolar solvent models. Tan C; Tan YH; Luo R J Phys Chem B; 2007 Oct; 111(42):12263-74. PubMed ID: 17918880 [TBL] [Abstract][Full Text] [Related]
17. A test of implicit solvent models on the folding simulation of the GB1 peptide. Shao Q; Yang L; Gao YQ J Chem Phys; 2009 May; 130(19):195104. PubMed ID: 19466868 [TBL] [Abstract][Full Text] [Related]
18. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins. Avbelj F J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873 [TBL] [Abstract][Full Text] [Related]
19. A molecular dynamics study of the correlations between solvent-accessible surface, molecular volume, and folding state. Floriano WB; Domont GB; Nascimento MA J Phys Chem B; 2007 Feb; 111(7):1893-9. PubMed ID: 17261064 [TBL] [Abstract][Full Text] [Related]
20. Comparison of solvation-effect methods for the simulation of peptide interactions with a hydrophobic surface. Sun Y; Dominy BN; Latour RA J Comput Chem; 2007 Aug; 28(11):1883-92. PubMed ID: 17405115 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]