BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 20094871)

  • 1. Computer-based analysis, visualization, and interpretation of antimicrobial peptide activities.
    Mikut R
    Methods Mol Biol; 2010; 618():287-99. PubMed ID: 20094871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods for building quantitative structure-activity relationship (QSAR) descriptors and predictive models for computer-aided design of antimicrobial peptides.
    Taboureau O
    Methods Mol Biol; 2010; 618():77-86. PubMed ID: 20094859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short linear cationic antimicrobial peptides: screening, optimizing, and prediction.
    Hilpert K; Fjell CD; Cherkasov A
    Methods Mol Biol; 2008; 494():127-59. PubMed ID: 18726572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence requirements and an optimization strategy for short antimicrobial peptides.
    Hilpert K; Elliott MR; Volkmer-Engert R; Henklein P; Donini O; Zhou Q; Winkler DF; Hancock RE
    Chem Biol; 2006 Oct; 13(10):1101-7. PubMed ID: 17052614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of novispirin antimicrobial peptides by quantitative structure-activity relationship.
    Taboureau O; Olsen OH; Nielsen JD; Raventos D; Mygind PH; Kristensen HH
    Chem Biol Drug Des; 2006 Jul; 68(1):48-57. PubMed ID: 16923026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QSAR modeling and computer-aided design of antimicrobial peptides.
    Jenssen H; Fjell CD; Cherkasov A; Hancock RE
    J Pept Sci; 2008 Jan; 14(1):110-4. PubMed ID: 17847019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing antimicrobial host defense peptides.
    Sahl HG
    Chem Biol; 2006 Oct; 13(10):1015-7. PubMed ID: 17052605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative sequence-activity modeling of antimicrobial hexapeptides using a segmented principal component strategy: an approach to describe and predict activities of peptide drugs containing L/D and unnatural residues.
    Yousefinejad S; Bagheri M; Moosavi-Movahedi AA
    Amino Acids; 2015 Jan; 47(1):125-34. PubMed ID: 25323737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents.
    Conlon JM; Al-Ghaferi N; Abraham B; Leprince J
    Methods; 2007 Aug; 42(4):349-57. PubMed ID: 17560323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-activity relations of parasin I, a histone H2A-derived antimicrobial peptide.
    Koo YS; Kim JM; Park IY; Yu BJ; Jang SA; Kim KS; Park CB; Cho JH; Kim SC
    Peptides; 2008 Jul; 29(7):1102-8. PubMed ID: 18406495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The expanding scope of antimicrobial peptide structures and their modes of action.
    Nguyen LT; Haney EF; Vogel HJ
    Trends Biotechnol; 2011 Sep; 29(9):464-72. PubMed ID: 21680034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in antimicrobial peptide immunobiology.
    Yount NY; Bayer AS; Xiong YQ; Yeaman MR
    Biopolymers; 2006; 84(5):435-58. PubMed ID: 16736494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of tryptophan and hydrophobicity on the structure and bioactivity of novel indolicidin derivatives with promising pharmaceutical potential.
    Podorieszach AP; Huttunen-Hennelly HE
    Org Biomol Chem; 2010 Apr; 8(7):1679-87. PubMed ID: 20237682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversed sequence enhances antimicrobial activity of a synthetic peptide.
    Gopal R; Kim YJ; Seo CH; Hahm KS; Park Y
    J Pept Sci; 2011 May; 17(5):329-34. PubMed ID: 21462284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal selection of molecular descriptors for antimicrobial peptides classification: an evolutionary feature weighting approach.
    Beltran JA; Aguilera-Mendoza L; Brizuela CA
    BMC Genomics; 2018 Sep; 19(Suppl 7):672. PubMed ID: 30255784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convergent evolution-guided design of antimicrobial peptides derived from influenza A virus hemagglutinin.
    Zhu S; Aumelas A; Gao B
    J Med Chem; 2011 Feb; 54(4):1091-5. PubMed ID: 21222457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of novel antibacterial peptides by chemoinformatics and machine learning.
    Fjell CD; Jenssen H; Hilpert K; Cheung WA; Panté N; Hancock RE; Cherkasov A
    J Med Chem; 2009 Apr; 52(7):2006-15. PubMed ID: 19296598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluating different descriptors for model design of antimicrobial peptides with enhanced activity toward P. aeruginosa.
    Jenssen H; Lejon T; Hilpert K; Fjell CD; Cherkasov A; Hancock RE
    Chem Biol Drug Des; 2007 Aug; 70(2):134-42. PubMed ID: 17683374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors contributing to the potency of antimicrobial cationic peptides from the N-terminal region of human lactoferrin.
    Moriarty LC; Joannou CL; van den Berg JJ; Gorinsky B; Evans RW
    FEMS Microbiol Lett; 2004 Oct; 239(2):295-9. PubMed ID: 15476979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.