These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 20094931)

  • 1. A method for assessing the fit of a constitutive material model to experimental stress-strain data.
    Morrow DA; Donahue TH; Odegard GM; Kaufman KR
    Comput Methods Biomech Biomed Engin; 2010; 13(2):247-56. PubMed ID: 20094931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A visco-hyperelastic model for skeletal muscle tissue under high strain rates.
    Lu YT; Zhu HX; Richmond S; Middleton J
    J Biomech; 2010 Sep; 43(13):2629-32. PubMed ID: 20566197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel constitutive model of skeletal muscle taking into account anisotropic damage.
    Ito D; Tanaka E; Yamamoto S
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):85-93. PubMed ID: 19878905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the accuracy and fitting of transversely isotropic material models.
    Feng Y; Okamoto RJ; Genin GM; Bayly PV
    J Mech Behav Biomed Mater; 2016 Aug; 61():554-566. PubMed ID: 27136091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated model discovery for muscle using constitutive recurrent neural networks.
    Wang LM; Linka K; Kuhl E
    J Mech Behav Biomed Mater; 2023 Sep; 145():106021. PubMed ID: 37473576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D biomechanical properties of the layered esophagus: Fung-type SEF and new constitutive model.
    Ren P; Deng X; Li K; Li G; Li W
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1775-1788. PubMed ID: 34132899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutive formulation and numerical analysis of the biomechanical behaviour of forefoot plantar soft tissue.
    Fontanella CG; Favaretto E; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2014 Sep; 228(9):942-51. PubMed ID: 25313025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viscoelastic properties of passive skeletal muscle in compression: stress-relaxation behaviour and constitutive modelling.
    Van Loocke M; Lyons CG; Simms CK
    J Biomech; 2008; 41(7):1555-66. PubMed ID: 18396290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle tensile strain dependence: Hyperviscoelastic nonlinearity.
    Wheatley BB; Morrow DA; Odegard GM; Kaufman KR; Haut Donahue TL
    J Mech Behav Biomed Mater; 2016 Jan; 53():445-454. PubMed ID: 26409235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unrealistic statistics: how average constitutive coefficients can produce non-physical results.
    Robertson D; Cook D
    J Mech Behav Biomed Mater; 2014 Dec; 40():234-239. PubMed ID: 25247769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive transverse mechanical properties of skeletal muscle under in vivo compression.
    Bosboom EM; Hesselink MK; Oomens CW; Bouten CV; Drost MR; Baaijens FP
    J Biomech; 2001 Oct; 34(10):1365-8. PubMed ID: 11522318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiaxial mechanical behaviour of the passive ureteral wall: experimental study and mathematical characterisation.
    Sokolis DP
    Comput Methods Biomech Biomed Engin; 2012; 15(11):1145-56. PubMed ID: 21660781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A continuum model for tension-compression asymmetry in skeletal muscle.
    Latorre M; Mohammadkhah M; Simms CK; Montáns FJ
    J Mech Behav Biomed Mater; 2018 Jan; 77():455-460. PubMed ID: 29028597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parametric study of a Hill-type hyperelastic skeletal muscle model.
    Lu YT; Beldie L; Walker B; Richmond S; Middleton J
    Proc Inst Mech Eng H; 2011 May; 225(5):437-47. PubMed ID: 21755774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of a new constitutive model for abdominal muscles.
    Tuset L; Fortuny G; Herrero J; Puigjaner D; López JM
    Comput Methods Programs Biomed; 2019 Oct; 179():104988. PubMed ID: 31443865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling Skeletal Muscle Stress and Intramuscular Pressure: A Whole Muscle Active-Passive Approach.
    Wheatley BB; Odegard GM; Kaufman KR; Haut Donahue TL
    J Biomech Eng; 2018 Aug; 140(8):0810061-8. PubMed ID: 30003256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A validated model of passive skeletal muscle to predict force and intramuscular pressure.
    Wheatley BB; Odegard GM; Kaufman KR; Haut Donahue TL
    Biomech Model Mechanobiol; 2017 Jun; 16(3):1011-1022. PubMed ID: 28040867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifiability of tissue material parameters from uniaxial tests using multi-start optimization.
    Safa BN; Santare MH; Ethier CR; Elliott DM
    Acta Biomater; 2021 Mar; 123():197-207. PubMed ID: 33444797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bilinear stress-strain relationship for arteries.
    Zhang W; Kassab GS
    Biomaterials; 2007 Feb; 28(6):1307-15. PubMed ID: 17112583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.