These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 20095056)
1. Cysteine-free Rop: a four-helix bundle core mutant has wild-type stability and structure but dramatically different unfolding kinetics. Hari SB; Byeon C; Lavinder JJ; Magliery TJ Protein Sci; 2010 Apr; 19(4):670-9. PubMed ID: 20095056 [TBL] [Abstract][Full Text] [Related]
2. Resonance assignments of wild-type and two cysteine-free variants of the four-helix bundle protein, Rop. Bowles DP; Yuan C; Stephany KR; Lavinder JJ; Hansen AL; Magliery TJ Biomol NMR Assign; 2018 Oct; 12(2):345-350. PubMed ID: 30159810 [TBL] [Abstract][Full Text] [Related]
3. Dramatic structural and thermodynamic consequences of repacking a protein's hydrophobic core. Willis MA; Bishop B; Regan L; Brunger AT Structure; 2000 Dec; 8(12):1319-28. PubMed ID: 11188696 [TBL] [Abstract][Full Text] [Related]
4. Speeding up protein folding: mutations that increase the rate at which Rop folds and unfolds by over four orders of magnitude. Munson M; Anderson KS; Regan L Fold Des; 1997; 2(1):77-87. PubMed ID: 9080201 [TBL] [Abstract][Full Text] [Related]
5. Redesigning the hydrophobic core of a four-helix-bundle protein. Munson M; O'Brien R; Sturtevant JM; Regan L Protein Sci; 1994 Nov; 3(11):2015-22. PubMed ID: 7535612 [TBL] [Abstract][Full Text] [Related]
6. Redesigning the topology of a four-helix-bundle protein: monomeric Rop. Predki PF; Regan L Biochemistry; 1995 Aug; 34(31):9834-9. PubMed ID: 7543279 [TBL] [Abstract][Full Text] [Related]
7. Effects of core-packing on the structure, function, and mechanics of a four-helix-bundle protein ROP. Ceruso MA; Grottesi A; Di Nola A Proteins; 1999 Sep; 36(4):436-46. PubMed ID: 10450085 [TBL] [Abstract][Full Text] [Related]
8. Dimer-to-tetramer transformation: loop excision dramatically alters structure and stability of the ROP four alpha-helix bundle protein. Lassalle MW; Hinz HJ; Wenzel H; Vlassi M; Kokkinidis M; Cesareni G J Mol Biol; 1998 Jun; 279(4):987-1000. PubMed ID: 9642076 [TBL] [Abstract][Full Text] [Related]
9. Restored heptad pattern continuity does not alter the folding of a four-alpha-helix bundle. Vlassi M; Steif C; Weber P; Tsernoglou D; Wilson KS; Hinz HJ; Kokkinidis M Nat Struct Biol; 1994 Oct; 1(10):706-16. PubMed ID: 7634075 [TBL] [Abstract][Full Text] [Related]
10. Effects of cavity-creating mutations on conformational stability and structure of the dimeric 4-alpha-helical protein ROP: thermal unfolding studies. Steif C; Hinz HJ; Cesareni G Proteins; 1995 Sep; 23(1):83-96. PubMed ID: 8539253 [TBL] [Abstract][Full Text] [Related]
11. Slow unfolding and refolding kinetics of the mesophilic Rop wild-type protein in the transition range. Rosengarth A; Rösgen J; Hinz HJ Eur J Biochem; 1999 Sep; 264(3):989-95. PubMed ID: 10491149 [TBL] [Abstract][Full Text] [Related]
12. Conservation of mechanism, variation of rate: folding kinetics of three homologous four-helix bundle proteins. Dalal S; Canet D; Kaiser SE; Dobson CM; Regan L Protein Eng Des Sel; 2008 Mar; 21(3):197-206. PubMed ID: 18299293 [TBL] [Abstract][Full Text] [Related]
13. A cell-based screen for function of the four-helix bundle protein Rop: a new tool for combinatorial experiments in biophysics. Magliery TJ; Regan L Protein Eng Des Sel; 2004 Jan; 17(1):77-83. PubMed ID: 14985540 [TBL] [Abstract][Full Text] [Related]
14. Characterization of folding the four-helix bundle protein Rop by real-time NMR. van Nuland NA; Dobson CM; Regan L Protein Eng Des Sel; 2008 Mar; 21(3):165-70. PubMed ID: 18299292 [TBL] [Abstract][Full Text] [Related]
15. What makes a protein a protein? Hydrophobic core designs that specify stability and structural properties. Munson M; Balasubramanian S; Fleming KG; Nagi AD; O'Brien R; Sturtevant JM; Regan L Protein Sci; 1996 Aug; 5(8):1584-93. PubMed ID: 8844848 [TBL] [Abstract][Full Text] [Related]
16. Loopless Rop: structure and dynamics of an engineered homotetrameric variant of the repressor of primer protein. Glykos NM; Papanikolau Y; Vlassi M; Kotsifaki D; Cesareni G; Kokkinidis M Biochemistry; 2006 Sep; 45(36):10905-19. PubMed ID: 16953576 [TBL] [Abstract][Full Text] [Related]
17. Engineering heme binding sites in monomeric rop. Di Nardo G; Di Venere A; Mei G; Sadeghi SJ; Wilson JR; Gilardi G J Biol Inorg Chem; 2009 May; 14(4):497-505. PubMed ID: 19152012 [TBL] [Abstract][Full Text] [Related]
18. Engineering a Cysteine-Free Form of Human Fibroblast Growth Factor-1 for "Second Generation" Therapeutic Application. Xia X; Kumru OS; Blaber SI; Middaugh CR; Li L; Ornitz DM; Sutherland MA; Tenorio CA; Blaber M J Pharm Sci; 2016 Apr; 105(4):1444-53. PubMed ID: 27019961 [TBL] [Abstract][Full Text] [Related]
19. The Curious Case of A31P, a Topology-Switching Mutant of the Repressor of Primer Protein: A Molecular Dynamics Study of Its Folding and Misfolding. Vouzina OD; Tafanidis A; Glykos NM J Chem Inf Model; 2024 Aug; 64(15):6081-6091. PubMed ID: 39052910 [TBL] [Abstract][Full Text] [Related]
20. Distinct cysteine sulfhydryl environments detected by analysis of Raman S-hh markers of Cys-->Ser mutant proteins. Raso SW; Clark PL; Haase-Pettingell C; King J; Thomas GJ J Mol Biol; 2001 Mar; 307(3):899-911. PubMed ID: 11273709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]