These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 20095146)

  • 1. The relationship between drained angle and flow rate of size fractions of powder excipients.
    Sklubalová Z; Zatloukal Z
    Pharmazie; 2009 Dec; 64(12):846-7. PubMed ID: 20095146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Penetrometry and estimation of the flow rate of powder excipients.
    Zatloukal Z; Sklubalová Z
    Pharmazie; 2007 Mar; 62(3):185-9. PubMed ID: 17416194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow rate and flow equation of pharmaceutical free-flowable powder excipients.
    Sklubalová Z; Zatloukal Z
    Pharm Dev Technol; 2013 Feb; 18(1):106-11. PubMed ID: 22149908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of orifice height on flow rate of powder excipients.
    Zatloukal Z; Sklubalová Z
    Pharmazie; 2011 Dec; 66(12):953-5. PubMed ID: 22312701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indentation test for free-flowable powder excipients.
    Zatloukal Z; Sklubalová Z
    Pharm Dev Technol; 2008; 13(1):85-92. PubMed ID: 18300103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the size of a conical hopper aperture on the parameters of the flow equation of sorbitol and its size fractions.
    Šklubalová Z; Hurychová H
    Ceska Slov Farm; 2015; 64(1-2):14-8. PubMed ID: 26084644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of particle properties on the flowability of ibuprofen powders.
    Liu LX; Marziano I; Bentham AC; Litster JD; White ET; Howes T
    Int J Pharm; 2008 Oct; 362(1-2):109-17. PubMed ID: 18652883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractal aspects of the flow and shear behaviour of free-flowable particle size fractions of pharmaceutical directly compressible excipient sorbitol.
    Hurychová H; Lebedová V; Šklubalová Z; Dzámová P; Svěrák T; Stoniš J
    Ceska Slov Farm; 2016; 65(6):221-225. PubMed ID: 28079387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a laser diffraction method for the determination of the particle size of aerosolised powder formulations.
    Marriott C; MacRitchie HB; Zeng XM; Martin GP
    Int J Pharm; 2006 Dec; 326(1-2):39-49. PubMed ID: 16942848
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of Pharmaceutical Powder Flowability using Shear Cell-Based Methods and Application of Jenike's Methodology.
    Jager PD; Bramante T; Luner PE
    J Pharm Sci; 2015 Nov; 104(11):3804-3813. PubMed ID: 26220285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of the aerosolization properties of an inhalation dry powder based on selection of excipients.
    Minne A; Boireau H; Horta MJ; Vanbever R
    Eur J Pharm Biopharm; 2008 Nov; 70(3):839-44. PubMed ID: 18620052
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical and Experimental Evaluation of Flow Pattern of Pharmaceutical Powder Blends Discharged From Intermediate Bulk Containers (IBCs).
    Nauka E; Maurer R; Gonzalez AA; Zhang W; Narang AS; Mao C
    J Pharm Sci; 2021 Mar; 110(3):1172-1181. PubMed ID: 33049262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Penetrometry used for the estimation of flow rate].
    Zatloukal Z
    Ceska Slov Farm; 2005 Jul; 54(4):184-6. PubMed ID: 16124200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a micro dosing system for fine powder using a vibrating capillary. Part 1: the investigation of factors influencing on the dosing performance.
    Chen X; Seyfang K; Steckel H
    Int J Pharm; 2012 Aug; 433(1-2):34-41. PubMed ID: 22595639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of the material motion in a rotary processor.
    Vertommen J; Jaucot B; Rombaut P; Kinget R
    Pharm Dev Technol; 1996 Dec; 1(4):365-71. PubMed ID: 9552320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the grinding behaviour in a single particle impact device: studies on pharmaceutical powders.
    Meier M; John E; Wieckhusen D; Wirth W; Peukert W
    Eur J Pharm Sci; 2008 May; 34(1):45-55. PubMed ID: 18400475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cohesive, multicomponent, dense powder flow characterization by NIR.
    Benedetti C; Abatzoglou N; Simard JS; McDermott L; Léonard G; Cartilier L
    Int J Pharm; 2007 May; 336(2):292-301. PubMed ID: 17240094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Methods to Measure Powder Flow.
    Tan G; Morton DA; Larson I
    Curr Pharm Des; 2015; 21(40):5751-65. PubMed ID: 26446467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a robust procedure for assessing powder flow using a commercial avalanche testing instrument.
    Hancock BC; Vukovinsky KE; Brolley B; Grimsey I; Hedden D; Olsofsky A; Doherty RA
    J Pharm Biomed Anal; 2004 Sep; 35(5):979-90. PubMed ID: 15336345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of powder flow using a recording powder flowmeter and measurement of the dynamic angle of repose.
    Hegde RP; Rheingold JL; Welch S; Rhodes CT
    J Pharm Sci; 1985 Jan; 74(1):11-5. PubMed ID: 3981409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.