These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20095449)

  • 1. Limitations of functionally determined joint centers for the analysis of athletic human movement: a case study of the upper limb.
    Roosen A; Pain MT; Begon M
    J Appl Biomech; 2009 Nov; 25(4):281-92. PubMed ID: 20095449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the global optimisation method within the upper limb kinematics analysis.
    Roux E; Bouilland S; Godillon-Maquinghen AP; Bouttens D
    J Biomech; 2002 Sep; 35(9):1279-83. PubMed ID: 12163317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous Estimation of Human Multi-Joint Angles From sEMG Using a State-Space Model.
    Ding Q; Han J; Zhao X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1518-1528. PubMed ID: 28113324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand.
    Wu G; van der Helm FC; Veeger HE; Makhsous M; Van Roy P; Anglin C; Nagels J; Karduna AR; McQuade K; Wang X; Werner FW; Buchholz B;
    J Biomech; 2005 May; 38(5):981-992. PubMed ID: 15844264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices.
    Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N
    J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems.
    Sholukha V; Bonnechere B; Salvia P; Moiseev F; Rooze M; Van Sint Jan S
    J Biomech; 2013 Sep; 46(14):2363-71. PubMed ID: 23972432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-dimensional analysis of overarm throwing in experienced handball players.
    van den Tillaar R; Ettema G
    J Appl Biomech; 2007 Feb; 23(1):12-9. PubMed ID: 17585175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in vivo investigation of ulnar nerve sliding during upper limb movements.
    Dilley A; Summerhayes C; Lynn B
    Clin Biomech (Bristol, Avon); 2007 Aug; 22(7):774-9. PubMed ID: 17531363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upper extremity kinematic and kinetic adaptations during a fatiguing repetitive task.
    Qin J; Lin JH; Faber GS; Buchholz B; Xu X
    J Electromyogr Kinesiol; 2014 Jun; 24(3):404-11. PubMed ID: 24642235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative comparison of current models for trunk motion in human movement analysis.
    Leardini A; Biagi F; Belvedere C; Benedetti MG
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):542-50. PubMed ID: 19482392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Influence of sex and side dominance on the results of quantitative, three-dimensional motion analysis of the upper extremities].
    Müller-Rath R; Disselhorst-Klug C; Williams S; Braun C; Miltner O
    Z Orthop Unfall; 2009; 147(4):463-71. PubMed ID: 19771674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Registration of 6-DOFs electrogoniometry and CT medical imaging for 3D joint modeling.
    Van Sint Jan S; Salvia P; Hilal I; Sholukha V; Rooze M; Clapworthy G
    J Biomech; 2002 Nov; 35(11):1475-84. PubMed ID: 12413966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time interactive viewing of 4D kinematic MR joint studies.
    Schulz H; Meetz K; Bos C; Bystrov D; Netsch T
    Med Image Comput Comput Assist Interv; 2005; 8(Pt 1):467-73. PubMed ID: 16685879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upper limb joint angle tracking with inertial sensors.
    El-Gohary M; Holmstrom L; Huisinga J; King E; McNames J; Horak F
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5629-32. PubMed ID: 22255616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of the functional method of hip joint center location subject to reduced range of hip motion.
    Piazza SJ; Erdemir A; Okita N; Cavanagh PR
    J Biomech; 2004 Mar; 37(3):349-56. PubMed ID: 14757454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of individual joint contributions to multijoint position reproduction acuity in overhead-throwing athletes.
    Tripp BL; Uhl TL; Mattacola CG; Srinivasan C; Shapiro R
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):466-73. PubMed ID: 16481079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Upper extremity biomechanical model for evaluation of pediatric joint demands during wheelchair mobility.
    Paul AJ; Slavens BA; Graf A; Krzak J; Vogel L; Harris GF
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4788-91. PubMed ID: 23366999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fast method for finding range of motion in the human joints.
    Arbabi E; Boulic R; Thalmann D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5079-82. PubMed ID: 18003148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering.
    Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H
    J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upper extremity reachable workspace evaluation with Kinect.
    Kurillo G; Han JJ; Obdržálek S; Yan P; Abresch RT; Nicorici A; Bajcsy R
    Stud Health Technol Inform; 2013; 184():247-53. PubMed ID: 23400165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.