These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20095455)

  • 1. Modeling of monofin swimming technique: optimization of feet displacement and fin strain.
    Rejman M; Ochmann B
    J Appl Biomech; 2009 Nov; 25(4):340-50. PubMed ID: 20095455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional model of monofin swimming technique based on the construction of neural networks.
    Rejman M; Ochmann B
    J Sports Sci Med; 2007; 6(2):193-203. PubMed ID: 24149329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of Relationships between the Level of Errors in Leg and Monofin Movement and Stroke Parameters in Monofin Swimming.
    Rejman M
    J Sports Sci Med; 2013; 12(1):171-81. PubMed ID: 24149742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A kinematic and dynamic comparison of surface and underwater displacement in high level monofin swimming.
    Nicolas G; Bideau B
    Hum Mov Sci; 2009 Aug; 28(4):480-93. PubMed ID: 19395109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Searching for criteria in evaluating the monofin swimming turn from the perspective of coaching and improving technique.
    Rejman M; Borowska G
    J Sports Sci Med; 2008; 7(1):67-77. PubMed ID: 24150136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How are Strouhal number, drag, and efficiency adjusted in high level underwater monofin-swimming?
    Nicolas G; Bideau B; Colobert B; Berton E
    Hum Mov Sci; 2007 Jun; 26(3):426-42. PubMed ID: 17509711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competitive-Level Differences in Trunk and Foot Kinematics of Underwater Undulatory Swimming.
    Tanaka T; Hashizume S; Sato T; Isaka T
    Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The key kinematic determinants of undulatory underwater swimming at maximal velocity.
    Connaboy C; Naemi R; Brown S; Psycharakis S; McCabe C; Coleman S; Sanders R
    J Sports Sci; 2016; 34(11):1036-43. PubMed ID: 26367778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Underwater fin swimming in women with reference to fin selection.
    Pendergast DR; Mollendorf J; Logue C; Samimy S
    Undersea Hyperb Med; 2003; 30(1):75-85. PubMed ID: 12841610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor.
    Curet OM; Patankar NA; Lauder GV; MacIver MA
    Bioinspir Biomim; 2011 Jun; 6(2):026004. PubMed ID: 21474864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.
    Blake RW; Ng H; Chan KH; Li J
    Bioinspir Biomim; 2008 Sep; 3(3):034002. PubMed ID: 18626130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of two different sized hand paddles on the front crawl stroke kinematics.
    Gourgoulis V; Aggeloussis N; Vezos N; Mavromatis G
    J Sports Med Phys Fitness; 2006 Jun; 46(2):232-7. PubMed ID: 16823353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of fins used in underwater swimming.
    Pendergast DR; Mollendorf J; Logue C; Samimy S
    Undersea Hyperb Med; 2003; 30(1):57-73. PubMed ID: 12841609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coaching points for the technique of the eggbeater kick in synchronized swimming based on three-dimensional motion analysis.
    Homma M; Homma M
    Sports Biomech; 2005 Jan; 4(1):73-87. PubMed ID: 15807378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.
    Clark AJ; Tan X; McKinley PK
    Bioinspir Biomim; 2015 Nov; 10(6):065006. PubMed ID: 26601975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anthropometrical and physiological determinants of performance in French West Indian monofin swimmers: a first approach.
    Hue O; Galy O; Blonc S; Hertogh C
    Int J Sports Med; 2006 Aug; 27(8):605-9. PubMed ID: 16874586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of kick frequency on metabolic efficiency and performance at a severe intensity in international monofin-swimmers.
    Vercruyssen F; Boitel G; Alberty M; Nesi X; Bourdon L; Brisswalter J
    J Sports Sci; 2012; 30(10):1055-61. PubMed ID: 22616596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kick frequency affects the energy cost of aquatic locomotion in elite monofin swimmers.
    Boitel G; Vercruyssen F; Alberty M; Nesi X; Bourdon L; Brisswalter J
    Eur J Appl Physiol; 2010 Aug; 109(6):1087-93. PubMed ID: 20369367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A bio-robotic platform for integrating internal and external mechanics during muscle-powered swimming.
    Richards CT; Clemente CJ
    Bioinspir Biomim; 2012 Mar; 7(1):016010. PubMed ID: 22345392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical study of ball behavior in side-foot soccer kick based on impact dynamic theory.
    Ishii H; Yanagiya T; Naito H; Katamoto S; Maruyama T
    J Biomech; 2009 Dec; 42(16):2712-20. PubMed ID: 19782367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.