BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 20095479)

  • 1. [Research of joint-robotics-based design of biomechanics testing device on human spine].
    Deng G; Tian L; Mao Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1246-9. PubMed ID: 20095479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [On evaluating the robot-based experimental system for biomechanical experiment of human knee].
    Deng G; Tian L; Bai B; Sun H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Feb; 27(1):62-6. PubMed ID: 20337026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel application of velocity-based force control for use in robotic biomechanical testing.
    Goertzen DJ; Kawchuk GN
    J Biomech; 2009 Feb; 42(3):366-9. PubMed ID: 19124128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and validation of a general purpose robotic testing system for musculoskeletal applications.
    Noble LD; Colbrunn RW; Lee DG; van den Bogert AJ; Davis BL
    J Biomech Eng; 2010 Feb; 132(2):025001. PubMed ID: 20370251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New methodology for multi-dimensional spinal joint testing with a parallel robot.
    Walker MR; Dickey JP
    Med Biol Eng Comput; 2007 Mar; 45(3):297-304. PubMed ID: 17235615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Passive velocity field control of a forearm-wrist rehabilitation robot.
    Erdogan A; Satici AC; Patoglu V
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975433. PubMed ID: 22275634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The study of control methods for the robotic testing system for human musculoskeletal joints.
    Tian L; Gilbertson LG
    Comput Methods Programs Biomed; 2004 Jun; 74(3):211-20. PubMed ID: 15135572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Humanoid robot Lola: design and walking control.
    Buschmann T; Lohmeier S; Ulbrich H
    J Physiol Paris; 2009; 103(3-5):141-8. PubMed ID: 19665558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a rotary passive viscoelastic joint for wearable robots.
    Carpino G; Accoto D; Di Palo M; Tagliamonte NL; Sergi F; Guglielmelli E
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975356. PubMed ID: 22275560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic estimation of human arm impedance under nonlinear friction in robot joints: a model study.
    Chang PH; Kang SH
    J Neurosci Methods; 2010 May; 189(1):97-112. PubMed ID: 20298718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro spine testing using a robot-based testing system: comparison of displacement control and "hybrid control".
    Bell KM; Hartman RA; Gilbertson LG; Kang JD
    J Biomech; 2013 Jun; 46(10):1663-9. PubMed ID: 23702044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical considerations in the design of lower limb exoskeletons.
    Cenciarini M; Dollar AM
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975366. PubMed ID: 22275570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control methods and the performance of the robotic testing system for human musculoskeletal joints.
    Tian L
    Ann Biomed Eng; 2004 Jun; 32(6):889-98. PubMed ID: 15255219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time haptic-teleoperated robotic system for motor control analysis.
    Shull PB; Gonzalez RV
    J Neurosci Methods; 2006 Mar; 151(2):194-9. PubMed ID: 16153712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for identifying otological drill milling through bone tissue wall.
    Cao T; Li X; Gao Z; Feng G; Shen P
    Int J Med Robot; 2011 Jun; 7(2):148-55. PubMed ID: 21462289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive velocity-based six degree of freedom load control for real-time unconstrained biomechanical testing.
    Lawless IM; Ding B; Cazzolato BS; Costi JJ
    J Biomech; 2014 Sep; 47(12):3241-7. PubMed ID: 25016485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Four axial structural and material test machine.
    Berglund L; Samson M; An KN
    Biomed Sci Instrum; 1994; 30():213-7. PubMed ID: 7948639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reflexive neural network for dynamic biped walking control.
    Geng T; Porr B; Wörgötter F
    Neural Comput; 2006 May; 18(5):1156-96. PubMed ID: 16595061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using robotic systems in order to determine biomechanical properties of soft tissues.
    Kunkel ME; Moral A; Westphal R; Rode D; Rilk M; Wahl FM
    Stud Health Technol Inform; 2008; 133():156-65. PubMed ID: 18376024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the geometric and mechanical characteristics of the spine musculature to provide rotational stiffness to two spine joints in the neutral posture.
    Brown SH; Potvin JR
    Hum Mov Sci; 2007 Feb; 26(1):113-23. PubMed ID: 17141904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.