These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20095501)

  • 1. [Modeling and experimental study on frequency-domain electricity properties of biological materials].
    Tian H; Luo S; Zhang R; Yang G; Huang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Dec; 26(6):1349-52. PubMed ID: 20095501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Measuring the electricity frequency properties of blood].
    Huang H; Hu M; Chen H; Yuan Z; Tong S; Luo A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):275-9. PubMed ID: 15884534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Note: Characterization of electrode materials for dielectric spectroscopy.
    Malleo D; Nevill JT; van Ooyen A; Schnakenberg U; Lee LP; Morgan H
    Rev Sci Instrum; 2010 Jan; 81(1):016104. PubMed ID: 20113135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode polarization impedance in weak NaCl aqueous solutions.
    Mirtaheri P; Grimnes S; Martinsen OG
    IEEE Trans Biomed Eng; 2005 Dec; 52(12):2093-9. PubMed ID: 16366232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors.
    Wang L; Wang H; Wang L; Mitchelson K; Yu Z; Cheng J
    Biosens Bioelectron; 2008 Sep; 24(1):14-21. PubMed ID: 18511255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Newly explored electrical properties of normal skin and special skin sites.
    Mayer-Gindner A; Lek-Uthai A; Abdallah O; Bolz A
    Biomed Tech (Berl); 2004 May; 49(5):117-24. PubMed ID: 15212196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Body composition modeling in the calf using an equivalent circuit model of multi-frequency bioimpedance analysis.
    Zhu F; Leonard EF; Levin NW
    Physiol Meas; 2005 Apr; 26(2):S133-43. PubMed ID: 15798226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of textile electrodes and conductors using standardized measurement setups.
    Beckmann L; Neuhaus C; Medrano G; Jungbecker N; Walter M; Gries T; Leonhardt S
    Physiol Meas; 2010 Feb; 31(2):233-47. PubMed ID: 20086274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New equivalent-electrical circuit model and a practical measurement method for human body impedance.
    Chinen K; Kinjo I; Zamami A; Irei K; Nagayama K
    Biomed Mater Eng; 2015; 26 Suppl 1():S779-86. PubMed ID: 26406074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The complex impedance frequency response and the equivalent circuit model of human brain].
    Wu X; Dong X; Qin M; Fu F; You F; Liu R; Shi X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):500-3. PubMed ID: 14565024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empirical study of unipolar and bipolar configurations using high resolution single multi-walled carbon nanotube electrodes for electrophysiological probing of electrically excitable cells.
    de Asis ED; Leung J; Wood S; Nguyen CV
    Nanotechnology; 2010 Mar; 21(12):125101. PubMed ID: 20182008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of electrode geometry and cell location on single-cell impedance measurement.
    Wang JW; Wang MH; Jang LS
    Biosens Bioelectron; 2010 Feb; 25(6):1271-6. PubMed ID: 19926465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel hydrogel-based preparation-free EEG electrode.
    Alba NA; Sclabassi RJ; Sun M; Cui XT
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of sample geometry and electrode configuration on measured electrical resistivity of skeletal muscle.
    Kun S; Peura R
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):163-9. PubMed ID: 10721623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison study of electrodes for neonate electrical impedance tomography.
    Rahal M; Khor JM; Demosthenous A; Tizzard A; Bayford R
    Physiol Meas; 2009 Jun; 30(6):S73-84. PubMed ID: 19491443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the electric image produced by objects with complex impedance in weakly electric fish.
    Fujita K; Kashimori Y
    Biol Cybern; 2010 Aug; 103(2):105-18. PubMed ID: 20589509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element modeling of electrode-skin contact impedance in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):335-43. PubMed ID: 8375870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical impedance myography at frequencies up to 2 MHz.
    Shiffman CA; Kashuri H; Aaron R
    Physiol Meas; 2008 Jun; 29(6):S345-63. PubMed ID: 18544820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved surface EMG electrode for measuring genioglossus muscle activity.
    O'Connor CM; Lowery MM; Doherty LS; McHugh M; O'Muircheartaigh C; Cullen J; Nolan P; McNicholas WT; O'Malley MJ
    Respir Physiol Neurobiol; 2007 Oct; 159(1):55-67. PubMed ID: 17707698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the electrical properties of the electrode-skin-underlying tissue composite during a week-long programme of neuromuscular electrical stimulation.
    Bîrlea SI; Breen PP; Corley GJ; Bîrlea NM; Quondamatteo F; ÓLaighin G
    Physiol Meas; 2014 Feb; 35(2):231-52. PubMed ID: 24434816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.