BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 20095611)

  • 1. Effects of nucleophile, oxidative damage, and nucleobase orientation on the glycosidic bond cleavage in deoxyguanosine.
    Shim EJ; Przybylski JL; Wetmore SD
    J Phys Chem B; 2010 Feb; 114(6):2319-26. PubMed ID: 20095611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolysis of the damaged deoxythymidine glycol nucleoside and comparison to canonical DNA.
    Navarro-Whyte L; Kellie JL; Lenz SA; Wetmore SD
    Phys Chem Chem Phys; 2013 Nov; 15(44):19343-52. PubMed ID: 24121561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic and thermodynamic study of the glycosidic bond cleavage in deoxyuridine.
    Millen AL; Archibald LA; Hunter KC; Wetmore SD
    J Phys Chem B; 2007 Apr; 111(14):3800-12. PubMed ID: 17388517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolytic Glycosidic Bond Cleavage in RNA Nucleosides: Effects of the 2'-Hydroxy Group and Acid-Base Catalysis.
    Lenz SA; Kohout JD; Wetmore SD
    J Phys Chem B; 2016 Dec; 120(50):12795-12806. PubMed ID: 27933981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycosidic Bond Cleavage in DNA Nucleosides: Effect of Nucleobase Damage and Activation on the Mechanism and Barrier.
    Lenz SA; Kellie JL; Wetmore SD
    J Phys Chem B; 2015 Dec; 119(51):15601-12. PubMed ID: 26618397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human alkyladenine DNA glycosylase uses acid-base catalysis for selective excision of damaged purines.
    O'Brien PJ; Ellenberger T
    Biochemistry; 2003 Oct; 42(42):12418-29. PubMed ID: 14567703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum theoretical study of cleavage of the glycosidic bond of 2'-deoxyadenosine: base excision-repair mechanism of DNA by MutY.
    Tiwari S; Agnihotri N; Mishra PC
    J Phys Chem B; 2011 Mar; 115(12):3200-7. PubMed ID: 21384840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyramidalization of the glycosidic nitrogen provides the way for efficient cleavage of the N-glycosidic bond of 8-OxoG with the hOGG1 DNA repair protein.
    Šebera J; Trantírek L; Tanaka Y; Sychrovský V
    J Phys Chem B; 2012 Oct; 116(41):12535-44. PubMed ID: 22989268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic and conformational flexibility of the covalent linkage formed during β-lyase activity on an AP-site: application to hOgg1.
    Kellie JL; Wetmore SD
    J Phys Chem B; 2012 Sep; 116(35):10786-97. PubMed ID: 22877319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of the human DNA repair protein HOGG1 activity.
    Schyman P; Danielsson J; Pinak M; Laaksonen A
    J Phys Chem A; 2005 Mar; 109(8):1713-9. PubMed ID: 16833496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational flexibility of c8-phenoxyl-2'-deoxyguanosine nucleotide adducts.
    Millen AL; Manderville RA; Wetmore SD
    J Phys Chem B; 2010 Apr; 114(12):4373-82. PubMed ID: 20201579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the chemical step utilized by human alkyladenine DNA glycosylase: a concerted mechanism AIDS in selectively excising damaged purines.
    Rutledge LR; Wetmore SD
    J Am Chem Soc; 2011 Oct; 133(40):16258-69. PubMed ID: 21877721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycosidic bond cleavage in deoxynucleotides: effects of solvent and the DNA phosphate backbone in the computational model.
    Lenz SA; Kellie JL; Wetmore SD
    J Phys Chem B; 2012 Dec; 116(49):14275-84. PubMed ID: 23167947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical studies on the thermodynamics and kinetics of the N-glycosidic bond cleavage in deoxythymidine glycol.
    Chen ZQ; Zhang CH; Xue Y
    J Phys Chem B; 2009 Jul; 113(30):10409-20. PubMed ID: 19719287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational clues for a new mechanism in the glycosylase activity of the human DNA repair protein hOGG1. A generalized paradigm for purine-repairing systems?
    Calvaresi M; Bottoni A; Garavelli M
    J Phys Chem B; 2007 Jun; 111(23):6557-70. PubMed ID: 17508740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Base excision repair].
    Sliwiński T; Błasiak J
    Postepy Biochem; 2005; 51(2):120-9. PubMed ID: 16209349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ab initio theoretical study of electronic structure and properties of 2'-deoxyguanosine in gas phase and aqueous media.
    Mishra SK; Mishra PC
    J Comput Chem; 2002 Apr; 23(5):530-40. PubMed ID: 11948579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing an appropriate computational model for DNA nucleoside hydrolysis: a case study of 2'-deoxyuridine.
    Przybylski JL; Wetmore SD
    J Phys Chem B; 2009 May; 113(18):6533-42. PubMed ID: 19358541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DFT analysis of NMR scalar interactions across the glycosidic bond in DNA.
    Munzarová ML; Sklenár V
    J Am Chem Soc; 2003 Mar; 125(12):3649-58. PubMed ID: 12643728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trans-diammineplatinum(II): what makes it different from cis-DDP? Coordination chemistry of a neglected relative of cisplatin and its interaction with nucleic acids.
    Lippert B
    Met Ions Biol Syst; 1996; 33():105-41. PubMed ID: 8742842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.