These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 20095646)
1. Preparation of a storable zinc carbenoid species and its application in cyclopropanation, chain extension, and [2,3]-sigmatropic rearrangement reactions. Voituriez A; Zimmer LE; Charette AB J Org Chem; 2010 Feb; 75(4):1244-50. PubMed ID: 20095646 [TBL] [Abstract][Full Text] [Related]
2. A non-cross-linked soluble polystyrene-supported ruthenium catalyst for carbenoid transfer reactions. Choi MK; Yu WY; So MH; Zhou CY; Deng QH; Che CM Chem Asian J; 2008 Sep; 3(8-9):1256-65. PubMed ID: 18655066 [TBL] [Abstract][Full Text] [Related]
3. A water-soluble ruthenium glycosylated porphyrin catalyst for carbenoid transfer reactions in aqueous media with applications in bioconjugation reactions. Ho CM; Zhang JL; Zhou CY; Chan OY; Yan JJ; Zhang FY; Huang JS; Che CM J Am Chem Soc; 2010 Feb; 132(6):1886-94. PubMed ID: 20088517 [TBL] [Abstract][Full Text] [Related]
4. On the mechanism and stereochemistry of chiral lithium-carbenoid-promoted cyclopropanation reactions. Ke Z; Zhou Y; Gao H; Zhao C; Phillips DL Chemistry; 2007; 13(23):6724-31. PubMed ID: 17508383 [TBL] [Abstract][Full Text] [Related]
5. Zinc-mediated chain extension reaction of 1,3-diketones to 1,4-diketones and diastereoselective synthesis of trans-1,2-disubstituted cyclopropanols. Xue S; Li LZ; Liu YK; Guo QX J Org Chem; 2006 Jan; 71(1):215-8. PubMed ID: 16388638 [TBL] [Abstract][Full Text] [Related]
6. The effect of additives on the zinc carbenoid-mediated cyclopropanation of a dihydropyrrole. Ramirez A; Truc VC; Lawler M; Ye YK; Wang J; Wang C; Chen S; Laporte T; Liu N; Kolotuchin S; Jones S; Bordawekar S; Tummala S; Waltermire RE; Kronenthal D J Org Chem; 2014 Jul; 79(13):6233-43. PubMed ID: 24915024 [TBL] [Abstract][Full Text] [Related]
7. Theoretical study of samarium (II) carbenoid (ISmCH2I) promoted cyclopropanation reactions with ethylene and the effect of THF solvent on the reaction pathways. Zhao C; Wang D; Phillips DL J Am Chem Soc; 2003 Dec; 125(49):15200-9. PubMed ID: 14653755 [TBL] [Abstract][Full Text] [Related]
8. A density functional theory investigation of the Simmons-Smith cyclopropanation reaction: examination of the insertion reaction of zinc into the C-I bond of CH(2)I(2) and subsequent cyclopropanation reactions. Fang WH; Phillips DL; Wang DQ; Li YL J Org Chem; 2002 Jan; 67(1):154-60. PubMed ID: 11777453 [TBL] [Abstract][Full Text] [Related]
9. Zinc-mediated C-C bond sigmatropic rearrangement: a new and efficient methodology for the synthesis of beta-diketones. Li L; Cai P; Xu D; Guo Q; Xue S J Org Chem; 2007 Oct; 72(21):8131-4. PubMed ID: 17887703 [TBL] [Abstract][Full Text] [Related]
10. Carbenoid chain reactions: substitutions by organolithium compounds at unactivated 1-chloro-1-alkenes. Knorr R; Pires C; Behringer C; Menke T; Freudenreich J; Rossmann EC; Böhrer P J Am Chem Soc; 2006 Nov; 128(46):14845-53. PubMed ID: 17105294 [TBL] [Abstract][Full Text] [Related]
11. Balance between allylic C-H activation and cyclopropanation in the reactions of donor/acceptor-substituted rhodium carbenoids with trans-alkenes. Davies HM; Coleman MG; Ventura DL Org Lett; 2007 Nov; 9(24):4971-4. PubMed ID: 17956111 [TBL] [Abstract][Full Text] [Related]
12. Isotope effects and the nature of selectivity in rhodium-catalyzed cyclopropanations. Nowlan DT; Gregg TM; Davies HM; Singleton DA J Am Chem Soc; 2003 Dec; 125(51):15902-11. PubMed ID: 14677982 [TBL] [Abstract][Full Text] [Related]
13. Density functional theory study of the platinum-catalyzed cyclopropanation reaction with olefin. Geng Z; Yan P; Wang Y; Yao X; Han Y; Liang J J Phys Chem A; 2007 Oct; 111(39):9961-8. PubMed ID: 17760428 [TBL] [Abstract][Full Text] [Related]
14. Carbenoid chain reactions through proton, deuteron, or bromine transfer from unactivated 1-bromo-1-alkenes to organolithium compounds. Knorr R; Pires C; Freudenreich J J Org Chem; 2007 Aug; 72(16):6084-90. PubMed ID: 17625883 [TBL] [Abstract][Full Text] [Related]
15. A novel class of tunable cyclopropanation reagents (RXZnCH2Y) and their synthetic applications. Cornwall RG; Wong OA; Du H; Ramirez TA; Shi Y Org Biomol Chem; 2012 Aug; 10(29):5498-513. PubMed ID: 22688971 [TBL] [Abstract][Full Text] [Related]
16. Intramolecular Simmons-Smith cyclopropanation. Studies into the reactivity of alkyl-substituted zinc carbenoids, effect of directing groups and synthesis of bicyclo[n.1.0]alkanes. Bull JA; Charette AB J Am Chem Soc; 2010 Feb; 132(6):1895-902. PubMed ID: 20092247 [TBL] [Abstract][Full Text] [Related]
17. Alkylative carbocyclization of omega-iodoalkynyl tosylates with alkynyllithium compounds through a carbenoid-chain process leading to (1-iodoprop-2-ynylidene)tetrahydrofurans and -cyclopropanes. Harada T; Imaoka D; Kitano C; Kusukawa T Chemistry; 2010 Aug; 16(30):9164-74. PubMed ID: 20645350 [TBL] [Abstract][Full Text] [Related]
18. Samarium(III) carbenoid as a competing reactive species in samarium-promoted cyclopropanation reactions. Wang D; Zhao C; Phillips DL J Org Chem; 2004 Aug; 69(16):5512-5. PubMed ID: 15287811 [TBL] [Abstract][Full Text] [Related]
19. Iodomethylzinc phosphates: powerful reagents for the cyclopropanation of alkenes. Lacasse MC; Poulard C; Charette AB J Am Chem Soc; 2005 Sep; 127(36):12440-1. PubMed ID: 16144362 [TBL] [Abstract][Full Text] [Related]