These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 20095656)

  • 41. Nucleus-independent chemical shifts (NICS): distance dependence and revised criteria for aromaticity and antiaromaticity.
    Stanger A
    J Org Chem; 2006 Feb; 71(3):883-93. PubMed ID: 16438497
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mg-25 ultra-high field solid state NMR spectroscopy and first principles calculations of magnesium compounds.
    Pallister PJ; Moudrakovski IL; Ripmeester JA
    Phys Chem Chem Phys; 2009 Dec; 11(48):11487-500. PubMed ID: 20024420
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solid-state Ru-99 NMR spectroscopy: a useful tool for characterizing prototypal diamagnetic ruthenium compounds.
    Ooms KJ; Wasylishen RE
    J Am Chem Soc; 2004 Sep; 126(35):10972-80. PubMed ID: 15339183
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electron delocalization in the metallabenzenes: a computational analysis of ring currents.
    Periyasamy G; Burton NA; Hillier IH; Thomas JM
    J Phys Chem A; 2008 Jul; 112(26):5960-72. PubMed ID: 18543880
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A solid state 13C NMR, crystallographic, and quantum chemical investigation of phenylalanine and tyrosine residues in dipeptides and proteins.
    Mukkamala D; Zhang Y; Oldfield E
    J Am Chem Soc; 2007 Jun; 129(23):7385-92. PubMed ID: 17506558
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of multinuclear magnetic resonance and gauge-including projector-augmented-wave calculations to the study of solid group 13 chlorides.
    Chapman RP; Bryce DL
    Phys Chem Chem Phys; 2009 Aug; 11(32):6987-98. PubMed ID: 19652833
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Protonation of carbon single-walled nanotubes studied using 13C and 1H-13C cross polarization nuclear magnetic resonance and Raman spectroscopies.
    Engtrakul C; Davis MF; Gennett T; Dillon AC; Jones KM; Heben MJ
    J Am Chem Soc; 2005 Dec; 127(49):17548-55. PubMed ID: 16332107
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ring current effects in the active site of medium-chain Acyl-CoA dehydrogenase revealed by NMR spectroscopy.
    Wu J; Bell AF; Jaye AA; Tonge PJ
    J Am Chem Soc; 2005 Jun; 127(23):8424-32. PubMed ID: 15941276
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles.
    Pan X; Fan Z; Chen W; Ding Y; Luo H; Bao X
    Nat Mater; 2007 Jul; 6(7):507-11. PubMed ID: 17515914
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The synthesis of high coercivity cobalt-in-carbon nanotube hybrid structures and their optical limiting properties.
    Narayanan TN; Suchand Sandeep CS; Shaijumon MM; Ajayan PM; Philip R; Anantharaman MR
    Nanotechnology; 2009 Jul; 20(28):285702. PubMed ID: 19550014
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proteins and carbon nanotubes: close encounter in water.
    Nepal D; Geckeler KE
    Small; 2007 Jul; 3(7):1259-65. PubMed ID: 17492743
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Helical rosette nanotubes with tunable stability and hierarchy.
    Moralez JG; Raez J; Yamazaki T; Motkuri RK; Kovalenko A; Fenniri H
    J Am Chem Soc; 2005 Jun; 127(23):8307-9. PubMed ID: 15941263
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ozone adsorption on carbon nanotubes: the role of Stone-Wales defects.
    Picozzi S; Santucci S; Lozzi L; Valentini L; Delley B
    J Chem Phys; 2004 Apr; 120(15):7147-52. PubMed ID: 15267620
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative analysis of 13C shielding constants stereospecificity in the silicon and germanium derivatives of acetylenic aldehyde and ketone oximes based on the 13C NMR spectroscopy and GIAO calculations.
    Afonin AV; Pavlov DV; Mareev AV; Simonenko DE; Ushakov IA
    Magn Reson Chem; 2009 Jul; 47(7):601-4. PubMed ID: 19437455
    [TBL] [Abstract][Full Text] [Related]  

  • 55. How nitrogen modifies the nuclear magnetic shielding in tetraazanaphthalenes.
    García Cuesta I; Sánchez Marín J; Sánchez de Merás AM
    Phys Chem Chem Phys; 2009 Jun; 11(21):4278-85. PubMed ID: 19458830
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In situ Raman spectroelectrochemical study of 13C-labeled fullerene peapods and carbon nanotubes.
    Kalbác M; Kavan L; Zukalová M; Dunsch L
    Small; 2007 Oct; 3(10):1746-52. PubMed ID: 17853497
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Atomically resolved single-walled carbon nanotube intramolecular junctions.
    Ouyang M; Huang JL; Cheung CL; Lieber CM
    Science; 2001 Jan; 291(5501):97-100. PubMed ID: 11141554
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In situ quantum dot growth on multiwalled carbon nanotubes.
    Banerjee S; Wong SS
    J Am Chem Soc; 2003 Aug; 125(34):10342-50. PubMed ID: 12926959
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime.
    Gómez-Navarro C; de Pablo PJ; Gómez-Herrero J; Biel B; Garcia-Vidal FJ; Rubio A; Flores F
    Nat Mater; 2005 Jul; 4(7):534-9. PubMed ID: 15965479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.