BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20095688)

  • 1. Electroviscous effects in nanofluidic channels.
    Wang M; Chang CC; Yang RJ
    J Chem Phys; 2010 Jan; 132(2):024701. PubMed ID: 20095688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of electrokinetic transport in silica nanofluidic channels.
    Wang M; Kang Q; Ben-Naim E
    Anal Chim Acta; 2010 Apr; 664(2):158-64. PubMed ID: 20363398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic flow-induced currents in silica nanofluidic channels.
    Choi YS; Kim SJ
    J Colloid Interface Sci; 2009 May; 333(2):672-8. PubMed ID: 19251271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A perspective on streaming current in silica nanofluidic channels: Poisson-Boltzmann model versus Poisson-Nernst-Planck model.
    Chang CC; Yang RJ
    J Colloid Interface Sci; 2009 Nov; 339(2):517-20. PubMed ID: 19712936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method.
    Wang M; Wang J; Chen S; Pan N
    J Colloid Interface Sci; 2006 Dec; 304(1):246-53. PubMed ID: 16989843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slip Effects on Ionic Current of Viscoelectric Electroviscous Flows through Different Length Nanofluidic Channels.
    Sen T; Barisik M
    Langmuir; 2020 Aug; 36(31):9191-9203. PubMed ID: 32635731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrofluidic gating of a chemically reactive surface.
    Jiang Z; Stein D
    Langmuir; 2010 Jun; 26(11):8161-73. PubMed ID: 20192159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical charge of silica surfaces at high ionic strength in narrow channels.
    Wang M; Revil A
    J Colloid Interface Sci; 2010 Mar; 343(1):381-6. PubMed ID: 20035946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels.
    Wang J; Wang M; Li Z
    J Colloid Interface Sci; 2006 Apr; 296(2):729-36. PubMed ID: 16226765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroviscous effects on pressure-driven flow of dilute electrolyte solutions in small microchannels.
    Ren CL; Li D
    J Colloid Interface Sci; 2004 Jun; 274(1):319-30. PubMed ID: 15120306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrokinetic transport in microchannels with random roughness.
    Wang M; Kang Q
    Anal Chem; 2009 Apr; 81(8):2953-61. PubMed ID: 19301844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended Electrokinetic Characterization of Flat Solid Surfaces.
    Werner C; Körber H; Zimmermann R; Dukhin S; Jacobasch HJ
    J Colloid Interface Sci; 1998 Dec; 208(1):329-346. PubMed ID: 9820781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilized enzymes: electrokinetic effects on reaction rates in a porous medium.
    Ruckenstein E; Kalthod DG
    Biotechnol Bioeng; 1982 Nov; 24(11):2357-82. PubMed ID: 18546211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane.
    Dhopeshwarkar R; Crooks RM; Hlushkou D; Tallarek U
    Anal Chem; 2008 Feb; 80(4):1039-48. PubMed ID: 18197694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport properties of long straight nano-channels in electrolyte solutions: a systematic approach.
    Yaroshchuk AE
    Adv Colloid Interface Sci; 2011 Oct; 168(1-2):278-91. PubMed ID: 21496786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reverse electrodialysis through nanochannels with inhomogeneously charged surfaces and overlapped electric double layers.
    Alizadeh A; Wang M
    J Colloid Interface Sci; 2018 Nov; 529():214-223. PubMed ID: 29894940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionic current rectification, breakdown, and switching in heterogeneous oxide nanofluidic devices.
    Cheng LJ; Guo LJ
    ACS Nano; 2009 Mar; 3(3):575-84. PubMed ID: 19220010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory of transport in nanofluidic channels with moderately thin electrical double layers: effect of the wall potential modulation on solutions of symmetric and asymmetric electrolytes.
    Petsev DN
    J Chem Phys; 2005 Dec; 123(24):244907. PubMed ID: 16396573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.