These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 20095688)

  • 61. Electroviscous Effects in Ceramic Nanofiltration Membranes.
    Farsi A; Boffa V; Christensen ML
    Chemphyschem; 2015 Nov; 16(16):3397-407. PubMed ID: 26346603
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Properties of ionic channels formed by the antibiotic syringomycin E in lipid bilayers: dependence on the electrolyte concentration in the bathing solution.
    Schagina LV; Kaulin YA; Feigin AM; Takemoto JY; Brand JG; Malev VV
    Membr Cell Biol; 1998; 12(4):537-55. PubMed ID: 10367570
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular dynamics simulation studies of the conformation and lateral mobility of a charged adsorbate biomolecule: implications for estimating the critical value of the radius of a pore in porous media.
    Zhang X; Wang JC; Lacki KM; Liapis AI
    J Colloid Interface Sci; 2005 Oct; 290(2):373-82. PubMed ID: 15925373
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ordering layers of [bmim][PF6] ionic liquid on graphite surfaces: molecular dynamics simulation.
    Maolin S; Fuchun Z; Guozhong W; Haiping F; Chunlei W; Shimou C; Yi Z; Jun H
    J Chem Phys; 2008 Apr; 128(13):134504. PubMed ID: 18397074
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Electrokinetic fingerprinting of grafted polyelectrolyte layers--a theoretical approach.
    Dukhin SS; Zimmermann R; Werner C
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):93-105. PubMed ID: 16901456
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ionic dispersion in nanofluidics.
    De Leebeeck A; Sinton D
    Electrophoresis; 2006 Dec; 27(24):4999-5008. PubMed ID: 17117385
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Accounting for diffuse layer ions in triple-layer models.
    Guerin M; Seaman J
    J Colloid Interface Sci; 2002 Jun; 250(2):492-5. PubMed ID: 16290690
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films--theoretical considerations and experimental studies.
    Schichtel N; Korte C; Hesse D; Janek J
    Phys Chem Chem Phys; 2009 May; 11(17):3043-8. PubMed ID: 19370197
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ion separation in nanofluidics.
    Xuan X
    Electrophoresis; 2008 Sep; 29(18):3737-43. PubMed ID: 18850643
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sorption of uranium (VI) on homoionic sodium smectite experimental study and surface complexation modeling.
    Korichi S; Bensmaili A
    J Hazard Mater; 2009 Sep; 169(1-3):780-93. PubMed ID: 19428178
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Phase transitions of concentrated DNA solutions in low concentrations of 1:1 supporting electrolyte.
    Strzelecka TE; Rill RL
    Biopolymers; 1990; 30(1-2):57-71. PubMed ID: 2224051
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A molecular dynamics simulation study of LiFePO4/electrolyte interfaces: structure and Li+ transport in carbonate and ionic liquid electrolytes.
    Smith GD; Borodin O; Russo SP; Rees RJ; Hollenkamp AF
    Phys Chem Chem Phys; 2009 Nov; 11(42):9884-97. PubMed ID: 19851568
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Electrokinetic transport of a spherical gel-layer model particle: inclusion of charge regulation and application to polystyrene sulfonate.
    Allison S; Xin Y
    J Colloid Interface Sci; 2006 Jul; 299(2):977-88. PubMed ID: 16527288
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Diffusiophoresis in a suspension of charge-regulating colloidal spheres.
    Keh HJ; Li YL
    Langmuir; 2007 Jan; 23(3):1061-72. PubMed ID: 17241015
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effects of water dissociation and CO2 contamination on the electrophoretic mobility of a spherical particle in aqueous salt-free concentrated suspensions.
    Carrique F; Ruiz-Reina E
    J Phys Chem B; 2009 Jun; 113(25):8613-25. PubMed ID: 19485311
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Impact of electroviscosity on the hydraulic conductance of the bordered pit membrane: a theoretical investigation.
    Santiago M; Pagay V; Stroock AD
    Plant Physiol; 2013 Oct; 163(2):999-1011. PubMed ID: 24014573
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Streaming currents in a single nanofluidic channel.
    van der Heyden FH; Stein D; Dekker C
    Phys Rev Lett; 2005 Sep; 95(11):116104. PubMed ID: 16197024
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Design and fabrication of nanofluidic devices by surface micromachining.
    Han A; de Rooij NF; Staufer U
    Nanotechnology; 2006 May; 17(10):2498-503. PubMed ID: 21727495
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Applicability of Donnan equilibrium theory at nanochannel-reservoir interfaces.
    Tian H; Zhang L; Wang M
    J Colloid Interface Sci; 2015 Aug; 452():78-88. PubMed ID: 25932967
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Pore network model of electrokinetic transport through charged porous media.
    Obliger A; Jardat M; Coelho D; Bekri S; Rotenberg B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043013. PubMed ID: 24827338
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.