BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20095856)

  • 1. The radiation environment on the Moon from galactic cosmic rays in a lunar habitat.
    Jia Y; Lin ZW
    Radiat Res; 2010 Feb; 173(2):238-44. PubMed ID: 20095856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of cosmic ray particles to radiation environment at high mountain altitude: Comparison of Monte Carlo simulations with experimental data.
    Mishev AL
    J Environ Radioact; 2016 Mar; 153():15-22. PubMed ID: 26714058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thick shielding against galactic cosmic radiation: A Monte Carlo study with focus on the role of secondary neutrons.
    Horst F; Boscolo D; Durante M; Luoni F; Schuy C; Weber U
    Life Sci Space Res (Amst); 2022 May; 33():58-68. PubMed ID: 35491030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte-Carlo calculations of particle fluences and neutron effective dose rates in the atmosphere.
    Matthiä D; Sihver L; Meier M
    Radiat Prot Dosimetry; 2008; 131(2):222-8. PubMed ID: 18448435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation dose and its protection in the Moon from galactic cosmic rays and solar energetic particles: at the lunar surface and in a lava tube.
    Naito M; Hasebe N; Shikishima M; Amano Y; Haruyama J; Matias-Lopes JA; Kim KJ; Kodaira S
    J Radiol Prot; 2020 Sep; 40(4):947-961. PubMed ID: 32964860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lunar lava tube radiation safety analysis.
    De Angelis G; Wilson JW; Clowdsley MS; Nealy JE; Humes DH; Clem JM
    J Radiat Res; 2002 Dec; 43 Suppl():S41-5. PubMed ID: 12793728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary protons and neutrons generated by galactic and solar cosmic ray particles behind the 1-100 g/cm2 aluminum shielding.
    Dementyev AV; Sobolevsky NM; Nymmik RA
    Adv Space Res; 1998; 21(12):1793-6. PubMed ID: 11542902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cosmic radiation dose in aircraft--a neutron track etch detector.
    Vuković B; Radolić V; Miklavcić I; Poje M; Varga M; Planinić J
    J Environ Radioact; 2007; 98(3):264-73. PubMed ID: 17600597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global dose distributions of neutrons and gamma-rays on the Moon.
    Naito M; Kusano H; Kodaira S
    Sci Rep; 2023 Aug; 13(1):13275. PubMed ID: 37582838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculation of dose distribution in a realistic brain structure and the indication of space radiation influence on human brains.
    Khaksarighiri S; Guo J; Wimmer-Schweingruber R; Narici L; Lohf H
    Life Sci Space Res (Amst); 2020 Nov; 27():33-48. PubMed ID: 34756228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutron radiation measurements on several international flights.
    Poje M; Vuković B; Radolić V; Miklavčić I; Planinić J
    Health Phys; 2015 Mar; 108(3):344-50. PubMed ID: 25627946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the influence of aircraft shielding on the aircrew exposure through an aircraft mathematical model.
    Ferrari A; Pelliccioni M; Villari R
    Radiat Prot Dosimetry; 2004; 108(2):91-105. PubMed ID: 14978289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Averaged particle dose conversion coefficients in air crew dosimetry.
    Mares V; Roesler S; Schraube H
    Radiat Prot Dosimetry; 2004; 110(1-4):371-6. PubMed ID: 15353676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human exposure to space radiation: role of primary and secondary particles.
    Trovati S; Ballarini F; Battistoni G; Cerutti F; Fassò A; Ferrari A; Gadioli E; Garzelli MV; Mairani A; Ottolenghi A; Paretzke HG; Parini V; Pelliccioni M; Pinsky L; Sala PR; Scannicchio D; Zankl M
    Radiat Prot Dosimetry; 2006; 122(1-4):362-6. PubMed ID: 17151013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depth-dose equivalent relationship for cosmic rays at various solar minima.
    Badhwar GD; Cucinotta FA; O'Neill PM
    Radiat Res; 1993 Apr; 134(1):9-15. PubMed ID: 8475259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo calculation of the angular distribution of cosmic rays at flight altitudes.
    Battistoni G; Ferrari A; Pelliccioni M; Villari R
    Radiat Prot Dosimetry; 2004; 112(3):331-43. PubMed ID: 15546896
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in lunar neutron dose estimates.
    Slaba TC; Blattnig SR; Clowdsley MS
    Radiat Res; 2011 Dec; 176(6):827-41. PubMed ID: 21859325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of wall thickness on measurement of dose for high energy neutrons.
    Perez-Nunez D; Braby LA
    Health Phys; 2010 Jan; 98(1):37-41. PubMed ID: 19959949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cosmic-ray exposure assessment using particle and heavy ion transport code system: case study Douala-Cameroon.
    Didier TSS; Joel GSC; Saïdou ; Samuel BG; Maurice NM
    Radiat Prot Dosimetry; 2024 May; 200(7):640-647. PubMed ID: 38648184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutron environments on the Martian surface.
    Clowdsley MS; Wilson JW; Kim MH; Singleterry RC; Tripathi RK; Heinbockel JH; Badavi FF; Shinn JL
    Phys Med; 2001; 17 Suppl 1():94-6. PubMed ID: 11770546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.