BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 2009586)

  • 1. Species comparison of acrylonitrile epoxidation by microsomes from mice, rats and humans: relationship to epoxide concentrations in mouse and rat blood.
    Roberts AE; Kedderis GL; Turner MJ; Rickert DE; Swenberg JA
    Carcinogenesis; 1991 Mar; 12(3):401-4. PubMed ID: 2009586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conjugation of acrylonitrile and 2-cyanoethylene oxide with hepatic glutathione.
    Kedderis GL; Batra R; Turner MJ
    Toxicol Appl Pharmacol; 1995 Nov; 135(1):9-17. PubMed ID: 7482544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A physiologically based dosimetry description of acrylonitrile and cyanoethylene oxide in the rat.
    Gargas ML; Andersen ME; Teo SK; Batra R; Fennell TR; Kedderis GL
    Toxicol Appl Pharmacol; 1995 Oct; 134(2):185-94. PubMed ID: 7570594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epoxidation of acrylonitrile by rat and human cytochromes P450.
    Kedderis GL; Batra R; Koop DR
    Chem Res Toxicol; 1993; 6(6):866-71. PubMed ID: 8117926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species differences in the hydrolysis of 2-cyanoethylene oxide, the epoxide metabolite of acrylonitrile.
    Kedderis GL; Batra R
    Carcinogenesis; 1993 Apr; 14(4):685-9. PubMed ID: 8472333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rodent tissue distribution of 2-cyanoethylene oxide, the epoxide metabolite of acrylonitrile.
    Kedderis GL; Batra R; Held SD; Loos MA; Teo SK
    Toxicol Lett; 1993 Jul; 69(1):25-30. PubMed ID: 8356564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refinement and verification of the physiologically based dosimetry description for acrylonitrile in rats.
    Kedderis GL; Teo SK; Batra R; Held SD; Gargas ML
    Toxicol Appl Pharmacol; 1996 Oct; 140(2):422-35. PubMed ID: 8887460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic modeling of beta-chloroprene metabolism: I. In vitro rates in liver and lung tissue fractions from mice, rats, hamsters, and humans.
    Himmelstein MW; Carpenter SC; Hinderliter PM
    Toxicol Sci; 2004 May; 79(1):18-27. PubMed ID: 14976339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose-dependent urinary excretion of acrylonitrile metabolites by rats and mice.
    Kedderis GL; Sumner SC; Held SD; Batra R; Turner MJ; Roberts AE; Fennell TR
    Toxicol Appl Pharmacol; 1993 Jun; 120(2):288-97. PubMed ID: 8511799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of DNA Adducts and Mutagenic Potency and Specificity in Rats Exposed to Acrylonitrile.
    Walker VE; Fennell TR; Walker DM; Bauer MJ; Upton PB; Douglas GR; Swenberg JA
    Chem Res Toxicol; 2020 Jul; 33(7):1609-1622. PubMed ID: 32529823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The metabolism of beta-chloroprene: preliminary in-vitro studies using liver microsomes.
    Himmelstein MW; Carpenter SC; Hinderliter PM; Snow TA; Valentine R
    Chem Biol Interact; 2001 Jun; 135-136():267-84. PubMed ID: 11397396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of tissue partition coefficients for volatile tissue-reactive chemicals: acrylonitrile and its metabolite 2-cyanoethylene oxide.
    Teo SK; Kedderis GL; Gargas ML
    Toxicol Appl Pharmacol; 1994 Sep; 128(1):92-6. PubMed ID: 8079360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the biotransformation of 1,3-butadiene and its metabolite, butadiene monoepoxide, by hepatic and pulmonary tissues from humans, rats and mice.
    Csanády GA; Guengerich FP; Bond JA
    Carcinogenesis; 1992 Jul; 13(7):1143-53. PubMed ID: 1638680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiologically based pharmacokinetic model parameter estimation and sensitivity and variability analyses for acrylonitrile disposition in humans.
    Sweeney LM; Gargas ML; Strother DE; Kedderis GL
    Toxicol Sci; 2003 Jan; 71(1):27-40. PubMed ID: 12520073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of acrylonitrile to 2-cyanoethylene oxide in F-344 rat liver microsomes, lung microsomes, and lung cells.
    Roberts AE; Lacy SA; Pilon D; Turner MJ; Rickert DE
    Drug Metab Dispos; 1989; 17(5):481-6. PubMed ID: 2573490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of rat liver microsomal epoxide hydrolase by thiazole and pyrazine: hydrolysis of 2-cyanoethylene oxide.
    Kim SG; Kedderis GL; Batra R; Novak RF
    Carcinogenesis; 1993 Aug; 14(8):1665-70. PubMed ID: 7689039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro kinetics of coumarin 3,4-epoxidation: application to species differences in toxicity and carcinogenicity.
    Born SL; Caudill D; Smith BJ; Lehman-McKeeman LD
    Toxicol Sci; 2000 Nov; 58(1):23-31. PubMed ID: 11053537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urinary metabolites of [1,2,3-13C]acrylonitrile in rats and mice detected by 13C nuclear magnetic resonance spectroscopy.
    Fennell TR; Kedderis GL; Sumner SC
    Chem Res Toxicol; 1991; 4(6):678-87. PubMed ID: 1807451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of ethylene and ethylene oxide in subcellular fractions of lungs and livers of male B6C3F1 mice and male fischer 344 rats and of human livers.
    Li Q; Csanády GA; Kessler W; Klein D; Pankratz H; Pütz C; Richter N; Filser JG
    Toxicol Sci; 2011 Oct; 123(2):384-98. PubMed ID: 21785163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Biomarkers of DNA Damage and Mutagenicity in Mice Exposed to Acrylonitrile.
    Walker VE; Walker DM; Ghanayem BI; Douglas GR
    Chem Res Toxicol; 2020 Jul; 33(7):1623-1632. PubMed ID: 32529832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.