These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 20095899)

  • 1. A catheter side wall tactile sensor: design, modeling and experiments.
    Wang H; Liu PX; Guo S; Ye X
    Minim Invasive Ther Allied Technol; 2010; 19(1):52-60. PubMed ID: 20095899
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial tactile sensing in minimally invasive surgery - a new technical approach.
    Schostek S; Ho CN; Kalanovic D; Schurr MO
    Minim Invasive Ther Allied Technol; 2006; 15(5):296-304. PubMed ID: 17062404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study on active catheter for minimally invasive surgery based on large deflection theory].
    Wang S; Liu H; Fu Y; Li X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):393-7. PubMed ID: 18610629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.
    Ottensmeyer MP; Ben-Ur E; Salisbury JK
    Stud Health Technol Inform; 2000; 70():236-42. PubMed ID: 10977548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tactile enhancement instrument for minimally invasive surgery.
    Yao HY; Hayward V; Ellis RE
    Comput Aided Surg; 2005 Jul; 10(4):233-9. PubMed ID: 16393792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A telerobotic haptic system for minimally invasive stereotactic neurosurgery.
    Rossi A; Trevisani A; Zanotto V
    Int J Med Robot; 2005 Jan; 1(2):64-75. PubMed ID: 17518380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on an actuation system for matrix control of the active catheter in a minimally-invasive intervention surgery].
    Fu YL; Ma HH; Li XL
    Zhongguo Yi Liao Qi Xie Za Zhi; 2006 Nov; 30(6):416-8, 430. PubMed ID: 17300007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery.
    Guo J; Guo S; Yu Y
    Biomed Microdevices; 2016 Oct; 18(5):76. PubMed ID: 27499092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Tactile sensor for tissue differentiation in minimally invasive ENT surgery].
    Plinkert PK; Baumann I; Flemming E
    Laryngorhinootologie; 1997 Sep; 76(9):543-9. PubMed ID: 9417183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An integrated force-position tactile sensor for improving diagnostic and therapeutic endoscopic surgery.
    Dargahi J; Najarian S
    Biomed Mater Eng; 2004; 14(2):151-66. PubMed ID: 15156106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tactile optical sensor for use in minimal invasive surgery.
    Fischer H; Trapp R
    Stud Health Technol Inform; 1996; 29():623-9. PubMed ID: 10172852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Virtual tool for bilaterally controlled forceps robot--for minimally invasive surgery.
    Abeykoon AM; Ohnishi K
    Int J Med Robot; 2007 Sep; 3(3):271-80. PubMed ID: 17729375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of a miniaturised triaxial force sensor in a minimally invasive surgical tool.
    Valdastri P; Harada K; Menciassi A; Beccai L; Stefanini C; Fujie M; Dario P
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2397-400. PubMed ID: 17073346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of actuated and sensor integrated forceps for minimally invasive robotic surger.
    Kuebler B; Seibold U; Hirzinger G
    Int J Med Robot; 2005 Sep; 1(3):96-107. PubMed ID: 17518396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A piezoresistive tactile sensor for tissue characterization during catheter-based cardiac surgery.
    Kalantari M; Ramezanifard M; Ahmadi R; Dargahi J; Kövecses J
    Int J Med Robot; 2011 Dec; 7(4):431-40. PubMed ID: 21976393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery.
    Tercero C; Ikeda S; Uchiyama T; Fukuda T; Arai F; Okada Y; Ono Y; Hattori R; Yamamoto T; Negoro M; Takahashi I
    Int J Med Robot; 2007 Mar; 3():52-8. PubMed ID: 17441026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and testing of a tactile feedback system for robotic surgery.
    Grundfest WS; Culjat MO; King CH; Franco ML; Wottawa C; Lewis CE; Bisley JW; Dutson EP
    Stud Health Technol Inform; 2009; 142():103-8. PubMed ID: 19377124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review: complications of minimally invasive spinal surgery.
    Perez-Cruet MJ; Fessler RG; Perin NI
    Neurosurgery; 2002 Nov; 51(5 Suppl):S26-36. PubMed ID: 12234427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining the role of haptic feedback in minimally invasive surgery.
    Bholat OS; Haluck RS; Kutz RH; Gorman PJ; Krummel TM
    Stud Health Technol Inform; 1999; 62():62-6. PubMed ID: 10538400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Force feedback in a piezoelectric linear actuator for neurosurgery.
    De Lorenzo D; De Momi E; Dyagilev I; Manganelli R; Formaglio A; Prattichizzo D; Shoham M; Ferrigno G
    Int J Med Robot; 2011 Sep; 7(3):268-75. PubMed ID: 21538769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.