These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 20095930)

  • 21. QTL mapping of sake brewing characteristics of yeast.
    Katou T; Namise M; Kitagaki H; Akao T; Shimoi H
    J Biosci Bioeng; 2009 Apr; 107(4):383-93. PubMed ID: 19332297
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and characterization of sake yeast mutants deficient in gamma-aminobutyric acid utilization in sake brewing.
    Takahashi T; Furukawa A; Hara S; Mizoguchi H
    J Biosci Bioeng; 2004; 97(6):412-8. PubMed ID: 16233652
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomass production and secretion of hydrolytic enzymes are influenced by the structural complexity of the nitrogen source in Fusarium oxysporum and Aspergillus nidulans.
    da Silva MC; Bertolini MC; Ernandes JR
    J Basic Microbiol; 2001; 41(5):269-80. PubMed ID: 11688213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of amylolytic enzymes in culture by Botryodiplodia theobromae and Sclerotium rolfsii associated with the corm rots of Colocasia esculenta.
    Nwufo MI; Fajola AO
    Acta Microbiol Hung; 1988; 35(4):371-7. PubMed ID: 2469279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Endomycopsis sp. 20-9--production of amylolytic enzymes].
    Sadova AI; Veselov IIa; Gracheva IM
    Mikrobiologiia; 1968; 37(3):425-9. PubMed ID: 5733239
    [No Abstract]   [Full Text] [Related]  

  • 26. Effect of flocculation on performance of arming yeast in direct ethanol fermentation.
    Seong KT; Katakura Y; Ninomiya K; Bito Y; Katahira S; Kondo A; Ueda M; Shioya S
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):60-6. PubMed ID: 16699755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of alpha-amylase and xylanase by an alkalophilic strain of Penicillium griseoroseum RR-99.
    Ray RR
    Acta Microbiol Pol; 2001; 50(3-4):305-9. PubMed ID: 11930999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inactivation of MET10 in brewer's yeast specifically increases SO2 formation during beer production.
    Hansen J; Kielland-Brandt MC
    Nat Biotechnol; 1996 Nov; 14(11):1587-91. PubMed ID: 9634827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Organic solvents in the production of enzymes from pancreas. II. Amylolytic activity of pancreatin suspended in diluted acetone].
    Libický A; Pechová J; Fidlerová J
    Cesk Farm; 1976 Mar; 25(2):56-60. PubMed ID: 1277313
    [No Abstract]   [Full Text] [Related]  

  • 30. [Organic solvents in the production of pancreatic enzymes. III. Amylolytic activity of pacreatin suspended in diluted ethanol].
    Libický A; Fidlerová J
    Cesk Farm; 1976 Oct; 25(8):307-11. PubMed ID: 1009587
    [No Abstract]   [Full Text] [Related]  

  • 31. [Microbe amylases: characteristic, properties and practical use].
    Kubrak OI; Lushchak VI
    Mikrobiol Z; 2007; 69(6):56-76. PubMed ID: 18380181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimised quantification of the antiyeast activity of different barley malts towards a lager brewing yeast strain.
    van Nierop SN; Axcell BC; Cantrell IC; Rautenbach M
    Food Microbiol; 2008 Oct; 25(7):895-901. PubMed ID: 18721679
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray.
    Hirasawa T; Nakakura Y; Yoshikawa K; Ashitani K; Nagahisa K; Furusawa C; Katakura Y; Shimizu H; Shioya S
    Appl Microbiol Biotechnol; 2006 Apr; 70(3):346-57. PubMed ID: 16283296
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Starch fermentation by recombinant saccharomyces cerevisiae strains expressing the alpha-amylase and glucoamylase genes from lipomyces kononenkoae and saccharomycopsis fibuligera.
    Eksteen JM; Van Rensburg P; Cordero Otero RR; Pretorius IS
    Biotechnol Bioeng; 2003 Dec; 84(6):639-46. PubMed ID: 14595776
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in the production of human therapeutic proteins in yeasts and filamentous fungi.
    Gerngross TU
    Nat Biotechnol; 2004 Nov; 22(11):1409-14. PubMed ID: 15529166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differentiation of brewing yeast strains by pyrolysis mass spectrometry and Fourier transform infrared spectroscopy.
    Timmins EM; Quain DE; Goodacre R
    Yeast; 1998 Jul; 14(10):885-93. PubMed ID: 9717234
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recombinant protein production in yeasts.
    Porro D; Mattanovich D
    Methods Mol Biol; 2004; 267():241-58. PubMed ID: 15269428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Effect of inoculum material on biosynthesis of proteolytic and amylolytic enzymes of Aspergillus tarricola].
    Aravina LA; Ponomareva VD
    Mikrobiologiia; 1977; 46(3):472-7. PubMed ID: 895556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A genetic analysis of glucoamylase activity in the diastatic yeast Saccharomyces cerevisiae NCYC 625.
    Patel D; Evans IH; Bevan EA
    Curr Genet; 1990 Apr; 17(4):281-8. PubMed ID: 2111230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of amylolytic enzymes by yeasts and their utilization in brewing.
    Sills AM; Panchal CJ; Russell I; Stewart GG
    Crit Rev Biotechnol; 1987; 5(2):105-15. PubMed ID: 20095930
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.