These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 20096309)
21. Establishment and analysis of specific DNA patterns in 16S-23S rRNA gene spacer regions for differentiating different bacteria. Shang S; Fu J; Dong G; Hong W; Du L; Yu X Chin Med J (Engl); 2003 Jan; 116(1):129-33. PubMed ID: 12667405 [TBL] [Abstract][Full Text] [Related]
22. A one-step reaction for the rapid identification of Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti using oligonucleotide primers designed from the 16S-23S rRNA intergenic sequences. Ferchichi M; Valcheva R; Prévost H; Onno B; Dousset X J Appl Microbiol; 2008 Jun; 104(6):1797-807. PubMed ID: 18217935 [TBL] [Abstract][Full Text] [Related]
23. Rapid identification of Lactobacillus nantensis, Lactobacillus spicheri and Lactobacillus hammesii species using species-specific primers. Ferchichi M; Valcheva R; Prévost H; Onno B; Dousset X Int J Food Microbiol; 2008 Apr; 123(3):269-76. PubMed ID: 18378031 [TBL] [Abstract][Full Text] [Related]
24. Prevalence of Arcobacter and Campylobacter on broiler carcasses during processing. Son I; Englen MD; Berrang ME; Fedorka-Cray PJ; Harrison MA Int J Food Microbiol; 2007 Jan; 113(1):16-22. PubMed ID: 16979251 [TBL] [Abstract][Full Text] [Related]
25. Occurrence of six virulence-associated genes in Arcobacter species isolated from various sources in Shiraz, Southern Iran. Tabatabaei M; Shirzad Aski H; Shayegh H; Khoshbakht R Microb Pathog; 2014 Jan; 66():1-4. PubMed ID: 24201143 [TBL] [Abstract][Full Text] [Related]
26. [Application of multiplex semi-nested polymerase chain reaction in detection of pathogens in cerebrospinal fluid]. Yan ZY; Wang B; Bi CX Zhonghua Liu Xing Bing Xue Za Zhi; 2003 Apr; 24(4):296-9. PubMed ID: 12820949 [TBL] [Abstract][Full Text] [Related]
27. Arcobacter thereius sp. nov., isolated from pigs and ducks. Houf K; On SL; Coenye T; Debruyne L; De Smet S; Vandamme P Int J Syst Evol Microbiol; 2009 Oct; 59(Pt 10):2599-604. PubMed ID: 19622651 [TBL] [Abstract][Full Text] [Related]
28. Detection and diversity of various Arcobacter species in Danish poultry. Atabay HI; Wainø M; Madsen M Int J Food Microbiol; 2006 May; 109(1-2):139-45. PubMed ID: 16516995 [TBL] [Abstract][Full Text] [Related]
29. Multiplex PCR assay for simultaneous detection and differentiation of Mycobacterium tuberculosis, Mycobacterium avium complexes and other Mycobacterial species directly from clinical specimens. Gopinath K; Singh S J Appl Microbiol; 2009 Aug; 107(2):425-35. PubMed ID: 19302308 [TBL] [Abstract][Full Text] [Related]
30. Detection of Arcobacter spp. in the coastal environment of the Mediterranean Sea. Fera MT; Maugeri TL; Gugliandolo C; Beninati C; Giannone M; La Camera E; Carbone M Appl Environ Microbiol; 2004 Mar; 70(3):1271-6. PubMed ID: 15006743 [TBL] [Abstract][Full Text] [Related]
31. Genome mapping of Arcobacter butzleri. Stoeva K; Bruce Ward F FEMS Microbiol Lett; 2006 Mar; 256(2):290-7. PubMed ID: 16499619 [TBL] [Abstract][Full Text] [Related]
32. Rapid identification of potentially probiotic Bifidobacterium species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA. Kwon HS; Yang EH; Lee SH; Yeon SW; Kang BH; Kim TY FEMS Microbiol Lett; 2005 Sep; 250(1):55-62. PubMed ID: 16039804 [TBL] [Abstract][Full Text] [Related]
33. Arcobacter trophiarum sp. nov., isolated from fattening pigs. De Smet S; Vandamme P; De Zutter L; On SLW; Douidah L; Houf K Int J Syst Evol Microbiol; 2011 Feb; 61(Pt 2):356-361. PubMed ID: 20305065 [TBL] [Abstract][Full Text] [Related]
34. Performance of five molecular methods for monitoring Arcobacter spp. Levican A; Figueras MJ BMC Microbiol; 2013 Oct; 13():220. PubMed ID: 24090042 [TBL] [Abstract][Full Text] [Related]
35. Bacterial 16S rRNA gene analysis revealed that bacteria related to Arcobacter spp. constitute an abundant and common component of the oyster microbiota (Tiostrea chilensis). Romero J; García-Varela M; Laclette JP; Espejo RT Microb Ecol; 2002 Nov; 44(4):365-71. PubMed ID: 12399898 [TBL] [Abstract][Full Text] [Related]
36. Detection of Arcobacter spp. in piggery effluent and effluent-irrigated soils in southeast Queensland. Chinivasagam HN; Corney BG; Wright LL; Diallo IS; Blackall PJ J Appl Microbiol; 2007 Aug; 103(2):418-26. PubMed ID: 17650202 [TBL] [Abstract][Full Text] [Related]
37. A new 16S rDNA-RFLP method for the discrimination of the accepted species of Arcobacter. Figueras MJ; Collado L; Guarro J Diagn Microbiol Infect Dis; 2008 Sep; 62(1):11-5. PubMed ID: 18060724 [TBL] [Abstract][Full Text] [Related]
38. Potential routes of acquisition of Arcobacter species by piglets. Ho TK; Lipman LJ; van der Graaf-van Bloois L; van Bergen M; Gaastra W Vet Microbiol; 2006 Apr; 114(1-2):123-33. PubMed ID: 16386382 [TBL] [Abstract][Full Text] [Related]
39. Arcobacter mytili sp. nov., an indoxyl acetate-hydrolysis-negative bacterium isolated from mussels. Collado L; Cleenwerck I; Van Trappen S; De Vos P; Figueras MJ Int J Syst Evol Microbiol; 2009 Jun; 59(Pt 6):1391-6. PubMed ID: 19502322 [TBL] [Abstract][Full Text] [Related]
40. A 16S rDNA-based PCR method for rapid and specific detection of Clostridium perfringens in food. Wang RF; Cao WW; Franklin W; Campbell W; Cerniglia CE Mol Cell Probes; 1994 Apr; 8(2):131-7. PubMed ID: 7935511 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]