BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 20096676)

  • 1. Myelopoiesis modulation by ACE hyperfunction in kinin B(1) receptor knockout mice: relationship with AcSDKP levels.
    Oliveira CR; Paredes-Gamero EJ; Barbosa CM; Nascimento FD; Batista EC; Reis FC; Martins AH; Ferreira AT; Carmona AK; Pesquero JB; Tersariol IL; Araújo RC; Bincoletto C
    Chem Biol Interact; 2010 Mar; 184(3):388-95. PubMed ID: 20096676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity of acetyl-n-ser-asp-lys-pro (AcSDKP) on hematopoietic progenitor cells in short-term and long-term murine bone marrow cultures.
    Jackson JD; Yan Y; Ewel C; Talmadge JE
    Exp Hematol; 1996 Feb; 24(3):475-81. PubMed ID: 8599978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of the kinin B1 receptor gene affects potentiating effect of captopril on BK-induced contraction in mice stomach fundus.
    Barbosa AM; Felipe SA; Pesquero JB; Paiva AC; Shimuta SI
    Peptides; 2006 Dec; 27(12):3377-82. PubMed ID: 17079052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamic and renal involvement of B1 and B2 kinin receptors during the acute phase of endotoxin shock in mice.
    Seguin T; Buleon M; Destrube M; Ranera MT; Couture R; Girolami JP; Tack I
    Int Immunopharmacol; 2008 Feb; 8(2):217-21. PubMed ID: 18182230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory action of the peptide AcSDKP on the proliferative state of hematopoietic stem cells in the presence of captopril but not lisinopril.
    Chisi JE; Wdzieczak-Bakala J; Riches AC
    Stem Cells; 1997; 15(6):455-60. PubMed ID: 9402658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The synthetic tetrapeptide AcSDKP protects cells that reconstitute long-term bone marrow stromal cultures from the effects of mafosfamide (Asta Z 7654).
    Genevay MC; Mormont C; Thomas F; Berthier R
    Exp Hematol; 1996 Jan; 24(1):77-81. PubMed ID: 8536796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angiotensin I-converting enzyme and metabolism of the haematological peptide N-acetyl-seryl-aspartyl-lysyl-proline.
    Azizi M; Junot C; Ezan E; Ménard J
    Clin Exp Pharmacol Physiol; 2001 Dec; 28(12):1066-9. PubMed ID: 11903317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Captopril inhibits the proliferation of hematopoietic stem and progenitor cells in murine long-term bone marrow cultures.
    Chisi JE; Wdzieczak-Bakala J; Thierry J; Briscoe CV; Riches AC
    Stem Cells; 1999; 17(6):339-44. PubMed ID: 10606162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production and consumption of the tetrapeptide AcSDKP, a negative regulator of hematopoietic stem cells, by hematopoietic microenvironmental cells.
    Li J; Volkov L; Comte L; Herve P; Praloran V; Charbord P
    Exp Hematol; 1997 Feb; 25(2):140-6. PubMed ID: 9015214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate dependence of angiotensin I-converting enzyme inhibition: captopril displays a partial selectivity for inhibition of N-acetyl-seryl-aspartyl-lysyl-proline hydrolysis compared with that of angiotensin I.
    Michaud A; Williams TA; Chauvet MT; Corvol P
    Mol Pharmacol; 1997 Jun; 51(6):1070-6. PubMed ID: 9187274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of angiotensin-converting enzyme inhibition on plasma, urine, and tissue concentrations of hemoregulatory peptide acetyl-Ser-Asp-Lys-Pro in rats.
    Junot C; Nicolet L; Ezan E; Gonzales MF; Menard J; Azizi M
    J Pharmacol Exp Ther; 1999 Dec; 291(3):982-7. PubMed ID: 10565814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible inhibitory effects and absence of toxicity of the tetrapeptide acetyl-N-Ser-Asp-Lys-Pro (AcSDKP) in human long-term bone marrow culture.
    Bonnet D; Lemoine FM; Khoury E; Pradelles P; Najman A; Guigon M
    Exp Hematol; 1992 Nov; 20(10):1165-9. PubMed ID: 1385195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of choroidal neovascularization by inhibiting angiotensin-converting enzyme: minimal role of bradykinin.
    Nagai N; Oike Y; Izumi-Nagai K; Koto T; Satofuka S; Shinoda H; Noda K; Ozawa Y; Inoue M; Tsubota K; Ishida S
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2321-6. PubMed ID: 17460297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinin B1 receptors facilitate the development of temporal lobe epilepsy in mice.
    Silva JA; Goto EM; Perosa SR; Argañaraz GA; Cavalheiro EA; Naffah-Mazzacoratti MG; Pesquero JB
    Int Immunopharmacol; 2008 Feb; 8(2):197-9. PubMed ID: 18182226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal and metabolic clearance of N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) during angiotensin-converting enzyme inhibition in humans.
    Azizi M; Ezan E; Reny JL; Wdzieczak-Bakala J; Gerineau V; Ménard J
    Hypertension; 1999 Mar; 33(3):879-86. PubMed ID: 10082503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The lactotripeptides isoleucine-proline-proline and valine-proline-proline do not inhibit the N-terminal or C-terminal angiotensin converting enzyme active sites in humans.
    Wuerzner G; Peyrard S; Blanchard A; Lalanne F; Azizi M
    J Hypertens; 2009 Jul; 27(7):1404-9. PubMed ID: 19506528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of kinin B1 and B2 receptors in the development of pilocarpine model of epilepsy.
    Adolfo Argañaraz G; Regina Perosa S; Cristina Lencioni E; Bader M; Abrão Cavalheiro E; da Graça Naffah-Mazzacoratti M; Pesquero JB; Antônio Silva J
    Brain Res; 2004 Jul; 1013(1):30-9. PubMed ID: 15196965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted disruption of the bradykinin B(2) receptor gene in mice alters the ontogeny of the renin-angiotensin system.
    Yosipiv IV; Dipp S; El-Dahr SS
    Am J Physiol Renal Physiol; 2001 Nov; 281(5):F795-801. PubMed ID: 11592936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced engraftment of intravenously transplanted hematopoietic stem cells into bone marrow of irradiated mice treated with AcSDKP.
    Suzuki A; Aizawa S; Araki S; Hoshi H; Nakano M; Kimura Y; Toyama K
    Exp Hematol; 1998 Jan; 26(1):79-83. PubMed ID: 9430517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo assessment of captopril selectivity of angiotensin I-converting enzyme inhibition: differential inhibition of acetyl-ser-asp-lys-pro and angiotensin I hydrolysis.
    Junot C; Menard J; Gonzales MF; Michaud A; Corvol P; Ezan E
    J Pharmacol Exp Ther; 1999 Jun; 289(3):1257-61. PubMed ID: 10336514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.