These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 20096701)

  • 1. Neutron spin-echo studies of hemoglobin and myoglobin: multiscale internal dynamics.
    Lal J; Fouquet P; Maccarini M; Makowski L
    J Mol Biol; 2010 Mar; 397(2):423-35. PubMed ID: 20096701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein conformation-controlled rebinding barrier of NO and its binding trajectories in myoglobin and hemoglobin at room temperature.
    Kim S; Lim M
    J Phys Chem B; 2012 May; 116(20):5819-30. PubMed ID: 22546010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural heterogeneity of the Fe(2+)-N epsilon (HisF8) bond in various hemoglobin and myoglobin derivatives probed by the Raman-active iron histidine stretching mode.
    Gilch H; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1993 Oct; 65(4):1470-85. PubMed ID: 8274641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature dependence of dynamics of hydrated myoglobin. Comparison of force field calculations with neutron scattering data.
    Loncharich RJ; Brooks BR
    J Mol Biol; 1990 Oct; 215(3):439-55. PubMed ID: 2231714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic docking of cytochrome b5 with myoglobin and alpha-hemoglobin: heme-neutralization "squares" and the binding of electron-transfer-reactive configurations.
    Wheeler KE; Nocek JM; Cull DA; Yatsunyk LA; Rosenzweig AC; Hoffman BM
    J Am Chem Soc; 2007 Apr; 129(13):3906-17. PubMed ID: 17343378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of solvent viscosity on ligand interconversion dynamics in the primary docking site of heme proteins.
    Kim S; Heo J; Lim M
    J Am Chem Soc; 2006 Mar; 128(9):2810-1. PubMed ID: 16506754
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myoglobin and hemoglobin rotational diffusion in the cell.
    Wang D; Kreutzer U; Chung Y; Jue T
    Biophys J; 1997 Nov; 73(5):2764-70. PubMed ID: 9370470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using polarization analysis to separate the coherent and incoherent scattering from protein samples.
    Gaspar AM; Busch S; Appavou MS; Haeussler W; Georgii R; Su Y; Doster W
    Biochim Biophys Acta; 2010 Jan; 1804(1):76-82. PubMed ID: 19595800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unified model of protein dynamics.
    Frauenfelder H; Chen G; Berendzen J; Fenimore PW; Jansson H; McMahon BH; Stroe IR; Swenson J; Young RD
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5129-34. PubMed ID: 19251640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of the low frequency dynamics of myoglobin. Measurement of the vibrational frequency distribution by inelastic neutron scattering.
    Cusack S; Doster W
    Biophys J; 1990 Jul; 58(1):243-51. PubMed ID: 2166599
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical comparison between myoglobin and hemoglobin.
    Aharoni R; Tobi D
    Proteins; 2018 Nov; 86(11):1176-1183. PubMed ID: 30183107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct observation of global protein motion in hemoglobin and myoglobin on picosecond time scales.
    Genberg L; Richard L; McLendon G; Miller RJ
    Science; 1991 Mar; 251(4997):1051-4. PubMed ID: 1998121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-coupled low-frequency modes of myoglobin and lysozyme observed by inelastic neutron scattering.
    Diehl M; Doster W; Petry W; Schober H
    Biophys J; 1997 Nov; 73(5):2726-32. PubMed ID: 9370466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incoherent elastic and quasi-elastic neutron scattering investigation of hemoglobin dynamics.
    Caronna C; Natali F; Cupane A
    Biophys Chem; 2005 Aug; 116(3):219-25. PubMed ID: 15908102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of a protein and its surrounding environment: a quasielastic neutron scattering study of myoglobin in water and glycerol mixtures.
    Jansson H; Kargl F; Fernandez-Alonso F; Swenson J
    J Chem Phys; 2009 May; 130(20):205101. PubMed ID: 19485482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast protein dynamics probed with infrared vibrational echo experiments.
    Fayer MD
    Annu Rev Phys Chem; 2001; 52():315-56. PubMed ID: 11326068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localised contacts lead to nanosecond hinge motions in dimeric bovine serum albumin.
    Ameseder F; Biehl R; Holderer O; Richter D; Stadler AM
    Phys Chem Chem Phys; 2019 Aug; 21(34):18477-18485. PubMed ID: 31210243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast internal dynamics in alcohol dehydrogenase.
    Monkenbusch M; Stadler A; Biehl R; Ollivier J; Zamponi M; Richter D
    J Chem Phys; 2015 Aug; 143(7):075101. PubMed ID: 26298156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics decomposition of temperature-dependent elastic neutron scattering by a protein solution.
    Hayward JA; Finney JL; Daniel RM; Smith JC
    Biophys J; 2003 Aug; 85(2):679-85. PubMed ID: 12885619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic circular dichroism studies of myoglobin, hemoglobin and peroxidase at room and low temperatures. Ferrous high spin derivatives.
    Sharonov YA; Mineyev AP; Livshitz MA; Sharonova NA; Zhurkin VB; Lysov YP
    Biophys Struct Mech; 1978 Apr; 4(2):139-58. PubMed ID: 25682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.