These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 20097116)

  • 1. BVOCs and global change.
    Peñuelas J; Staudt M
    Trends Plant Sci; 2010 Mar; 15(3):133-44. PubMed ID: 20097116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mild versus severe stress and BVOCs: thresholds, priming and consequences.
    Niinemets U
    Trends Plant Sci; 2010 Mar; 15(3):145-53. PubMed ID: 20006534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biogenic volatile organic compounds and plant competition.
    Kegge W; Pierik R
    Trends Plant Sci; 2010 Mar; 15(3):126-32. PubMed ID: 20036599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volatile organic compounds from Italian vegetation and their interaction with ozone.
    Calfapietra C; Fares S; Loreto F
    Environ Pollut; 2009 May; 157(5):1478-86. PubMed ID: 19019511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abiotic stresses and induced BVOCs.
    Loreto F; Schnitzler JP
    Trends Plant Sci; 2010 Mar; 15(3):154-66. PubMed ID: 20133178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induced BVOCs: how to bug our models?
    Arneth A; Niinemets U
    Trends Plant Sci; 2010 Mar; 15(3):118-25. PubMed ID: 20071208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant volatiles and the environment.
    Loreto F; Dicke M; Schnitzler JP; Turlings TC
    Plant Cell Environ; 2014 Aug; 37(8):1905-8. PubMed ID: 24811745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BVOCs: plant defense against climate warming?
    Peñuelas J; Llusià J
    Trends Plant Sci; 2003 Mar; 8(3):105-9. PubMed ID: 12663219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of land-use change and management on biogenic volatile organic compound emissions--selecting climate-smart cultivars.
    Rosenkranz M; Pugh TA; Schnitzler JP; Arneth A
    Plant Cell Environ; 2015 Sep; 38(9):1896-912. PubMed ID: 25255900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Climate change-induced vegetation change as a driver of increased subarctic biogenic volatile organic compound emissions.
    Valolahti H; Kivimäenpää M; Faubert P; Michelsen A; Rinnan R
    Glob Chang Biol; 2015 Sep; 21(9):3478-88. PubMed ID: 25994223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential of Climate Change and Herbivory to Affect the Release and Atmospheric Reactions of BVOCs from Boreal and Subarctic Forests.
    Yu H; Holopainen JK; Kivimäenpää M; Virtanen A; Blande JD
    Molecules; 2021 Apr; 26(8):. PubMed ID: 33920862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biogenic volatile organic compound emissions along a high arctic soil moisture gradient.
    Svendsen SH; Lindwall F; Michelsen A; Rinnan R
    Sci Total Environ; 2016 Dec; 573():131-138. PubMed ID: 27552736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential controls by climate and physiology over the emission rates of biogenic volatile organic compounds from mature trees in a semi-arid pine forest.
    Eller AS; Young LL; Trowbridge AM; Monson RK
    Oecologia; 2016 Feb; 180(2):345-58. PubMed ID: 26515962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biogenic volatile organic compounds in the Earth system.
    Laothawornkitkul J; Taylor JE; Paul ND; Hewitt CN
    New Phytol; 2009; 183(1):27-51. PubMed ID: 19422541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amazonian biogenic volatile organic compounds under global change.
    Yáñez-Serrano AM; Bourtsoukidis E; Alves EG; Bauwens M; Stavrakou T; Llusià J; Filella I; Guenther A; Williams J; Artaxo P; Sindelarova K; Doubalova J; Kesselmeier J; Peñuelas J
    Glob Chang Biol; 2020 Sep; 26(9):4722-4751. PubMed ID: 32445424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emission of volatile organic compounds from plants shows a biphasic pattern within an hormetic context.
    Agathokleous E; Kitao M; Calabrese EJ
    Environ Pollut; 2018 Aug; 239():318-321. PubMed ID: 29665552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient atmospheric cleansing of oxidized organic trace gases by vegetation.
    Karl T; Harley P; Emmons L; Thornton B; Guenther A; Basu C; Turnipseed A; Jardine K
    Science; 2010 Nov; 330(6005):816-9. PubMed ID: 20966216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smelling global climate change: mitigation of function for plant volatile organic compounds.
    Yuan JS; Himanen SJ; Holopainen JK; Chen F; Stewart CN
    Trends Ecol Evol; 2009 Jun; 24(6):323-31. PubMed ID: 19324451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems.
    Bornman JF; Barnes PW; Robinson SA; Ballaré CL; Flint SD; Caldwell MM
    Photochem Photobiol Sci; 2015 Jan; 14(1):88-107. PubMed ID: 25435216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple stress factors and the emission of plant VOCs.
    Holopainen JK; Gershenzon J
    Trends Plant Sci; 2010 Mar; 15(3):176-84. PubMed ID: 20144557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.