These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 20097297)
1. Application of probabilistic analysis for precisely correcting the QT interval for heart rate in telemetered common marmosets. Honda M; Komatsu R; Holzgrefe HH; Yamada Y; Isobe T; Kimura K; Itoh T; Tamaoki N; Tabo M J Pharmacol Toxicol Methods; 2010; 61(3):264-70. PubMed ID: 20097297 [TBL] [Abstract][Full Text] [Related]
2. Novel probabilistic method for precisely correcting the QT interval for heart rate in telemetered dogs and cynomolgus monkeys. Holzgrefe HH; Cavero I; Gleason CR; Warner WA; Buchanan LV; Gill MW; Burkett DE; Durham SK J Pharmacol Toxicol Methods; 2007; 55(2):159-75. PubMed ID: 16857392 [TBL] [Abstract][Full Text] [Related]
3. Application of a probabilistic method for the determination of drug-induced QT prolongation in telemetered cynomolgus monkeys: effects of moxifloxacin. Holzgrefe HH; Cavero I; Buchanan LV; Gill MW; Durham SK J Pharmacol Toxicol Methods; 2007; 55(3):227-37. PubMed ID: 17097307 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the nonclinical telemetered ECG: impact of logging rate and RR bin width in the dog and cynomolgus monkey. Holzgrefe HH; Cavero I; Gleason CR J Pharmacol Toxicol Methods; 2007; 56(1):34-42. PubMed ID: 17258913 [TBL] [Abstract][Full Text] [Related]
5. Sensitivity of common marmosets to detect drug-induced QT interval prolongation: moxifloxacin case study. Komatsu R; Honda M; Holzgrefe HH; Kubo J; Yamada Y; Isobe T; Kimura K; Itoh T; Tamaoki N; Tabo M J Pharmacol Toxicol Methods; 2010; 61(3):271-6. PubMed ID: 20097298 [TBL] [Abstract][Full Text] [Related]
6. Preclinical QT safety assessment: cross-species comparisons and human translation from an industry consortium. Holzgrefe H; Ferber G; Champeroux P; Gill M; Honda M; Greiter-Wilke A; Baird T; Meyer O; Saulnier M J Pharmacol Toxicol Methods; 2014; 69(1):61-101. PubMed ID: 23689033 [TBL] [Abstract][Full Text] [Related]
7. Prediction of drug-induced QT interval prolongation in telemetered common marmosets. Tabo M; Hara T; Sone S; Shishido N; Kuramoto S; Nakano K; Onodera H; Kimura K; Kobayashi K J Toxicol Sci; 2008 Aug; 33(3):315-25. PubMed ID: 18670163 [TBL] [Abstract][Full Text] [Related]
8. Importance of subject-specific QT/RR curvatures in the design of individual heart rate corrections of the QT interval. Malik M; Hnatkova K; Kowalski D; Keirns JJ; van Gelderen EM J Electrocardiol; 2012; 45(6):571-81. PubMed ID: 22999325 [TBL] [Abstract][Full Text] [Related]
9. Variability of heart rate correction methods for the QT interval. Desai M; Li L; Desta Z; Malik M; Flockhart D Br J Clin Pharmacol; 2003 Jun; 55(6):511-7. PubMed ID: 12814443 [TBL] [Abstract][Full Text] [Related]
10. Sample size, power calculations, and their implications for the cost of thorough studies of drug induced QT interval prolongation. Malik M; Hnatkova K; Batchvarov V; Gang Y; Smetana P; Camm AJ Pacing Clin Electrophysiol; 2004 Dec; 27(12):1659-69. PubMed ID: 15613131 [TBL] [Abstract][Full Text] [Related]
11. A new approach to correct the QT interval for changes in heart rate using a nonparametric regression model in beagle dogs. Watanabe H; Miyazaki H J Pharmacol Toxicol Methods; 2006; 53(3):234-41. PubMed ID: 16297641 [TBL] [Abstract][Full Text] [Related]
12. Differences between study-specific and subject-specific heart rate corrections of the QT interval in investigations of drug induced QTc prolongation. Malik M; Hnatkova K; Batchvarov V Pacing Clin Electrophysiol; 2004 Jun; 27(6 Pt 1):791-800. PubMed ID: 15189536 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of QT interval using a linear model in individual cynomolgus monkeys. Koga T; Kuwano K; Kito G; Kanefuji K J Pharmacol Toxicol Methods; 2007; 55(3):248-53. PubMed ID: 17141531 [TBL] [Abstract][Full Text] [Related]
14. A method for QT correction based on beat-to-beat analysis of the QT/RR interval relationship in conscious telemetred beagle dogs. Batey AJ; Doe CP J Pharmacol Toxicol Methods; 2002; 48(1):11-9. PubMed ID: 12750037 [TBL] [Abstract][Full Text] [Related]
15. Problems of heart rate correction in assessment of drug-induced QT interval prolongation. Malik M J Cardiovasc Electrophysiol; 2001 Apr; 12(4):411-20. PubMed ID: 11332559 [TBL] [Abstract][Full Text] [Related]
16. Magnitude of error introduced by application of heart rate correction formulas to the canine QT interval. King A; Bailie M; Olivier NB Ann Noninvasive Electrocardiol; 2006 Oct; 11(4):289-98. PubMed ID: 17040276 [TBL] [Abstract][Full Text] [Related]
17. A comparison of commonly used QT correction formulae: the effect of heart rate on the QTc of normal ECGs. Luo S; Michler K; Johnston P; Macfarlane PW J Electrocardiol; 2004; 37 Suppl():81-90. PubMed ID: 15534815 [TBL] [Abstract][Full Text] [Related]
18. Involvement of the autonomic nervous system in diurnal variation of corrected QT intervals in common marmosets. Honda M; Komatsu R; Isobe T; Tabo M; Ishikawa T J Pharmacol Sci; 2013; 121(2):131-7. PubMed ID: 23363785 [TBL] [Abstract][Full Text] [Related]
19. QT interval correction in patients with cirrhosis. Zambruni A; Di Micoli A; Lubisco A; Domenicali M; Trevisani F; Bernardi M J Cardiovasc Electrophysiol; 2007 Jan; 18(1):77-82. PubMed ID: 17229304 [TBL] [Abstract][Full Text] [Related]
20. Calculation of QT shift in non clinical safety pharmacology studies. Champeroux P; Martel E; Fowler JS; Maurin A; Sola ML; Jude S; Elamrani F; Weyn AA; Laveissiere A; Lala P; Richard S J Pharmacol Toxicol Methods; 2009; 59(2):73-85. PubMed ID: 19135537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]