These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
456 related articles for article (PubMed ID: 20097606)
1. A new EEG recording system for passive dry electrodes. Gargiulo G; Calvo RA; Bifulco P; Cesarelli M; Jin C; Mohamed A; van Schaik A Clin Neurophysiol; 2010 May; 121(5):686-93. PubMed ID: 20097606 [TBL] [Abstract][Full Text] [Related]
6. Dry and noncontact EEG sensors for mobile brain-computer interfaces. Chi YM; Wang YT; Wang Y; Maier C; Jung TP; Cauwenberghs G IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):228-35. PubMed ID: 22180514 [TBL] [Abstract][Full Text] [Related]
8. Novel dry polymer foam electrodes for long-term EEG measurement. Lin CT; Liao LD; Liu YH; Wang IJ; Lin BS; Chang JY IEEE Trans Biomed Eng; 2011 May; 58(5):1200-7. PubMed ID: 21193371 [TBL] [Abstract][Full Text] [Related]
9. A novel dry active electrode for EEG recording. Fonseca C; Silva Cunha JP; Martins RE; Ferreira VM; Marques de Sá JP; Barbosa MA; Martins da Silva A IEEE Trans Biomed Eng; 2007 Jan; 54(1):162-5. PubMed ID: 17260869 [TBL] [Abstract][Full Text] [Related]
10. High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes. Mathewson KE; Harrison TJ; Kizuk SA Psychophysiology; 2017 Jan; 54(1):74-82. PubMed ID: 28000254 [TBL] [Abstract][Full Text] [Related]
11. CNT/PDMS-based canal-typed ear electrodes for inconspicuous EEG recording. Hoon Lee J; Min Lee S; Jin Byeon H; Sook Hong J; Suk Park K; Lee SH J Neural Eng; 2014 Aug; 11(4):046014. PubMed ID: 24963747 [TBL] [Abstract][Full Text] [Related]
12. Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans. Fabrizi L; Sparkes M; Horesh L; Perez-Juste Abascal JF; McEwan A; Bayford RH; Elwes R; Binnie CD; Holder DS Physiol Meas; 2006 May; 27(5):S163-74. PubMed ID: 16636408 [TBL] [Abstract][Full Text] [Related]
13. Electroencephalographic recording during transcranial magnetic stimulation in humans and animals. Ives JR; Rotenberg A; Poma R; Thut G; Pascual-Leone A Clin Neurophysiol; 2006 Aug; 117(8):1870-5. PubMed ID: 16793336 [TBL] [Abstract][Full Text] [Related]
14. A comparative study of different references for EEG spectral mapping: the issue of the neutral reference and the use of the infinity reference. Yao D; Wang L; Oostenveld R; Nielsen KD; Arendt-Nielsen L; Chen AC Physiol Meas; 2005 Jun; 26(3):173-84. PubMed ID: 15798293 [TBL] [Abstract][Full Text] [Related]
15. Characterization of micromachined spiked biopotential electrodes. Griss P; Tolvanen-Laakso HK; Meriläinen P; Stemme G IEEE Trans Biomed Eng; 2002 Jun; 49(6):597-604. PubMed ID: 12046705 [TBL] [Abstract][Full Text] [Related]
16. A dry electrode for EEG recording. Taheri BA; Knight RT; Smith RL Electroencephalogr Clin Neurophysiol; 1994 May; 90(5):376-83. PubMed ID: 7514984 [TBL] [Abstract][Full Text] [Related]
17. Wireless instrumentation system based on dry electrodes for acquiring EEG signals. Dias NS; Carmo JP; Mendes PM; Correia JH Med Eng Phys; 2012 Sep; 34(7):972-81. PubMed ID: 22153322 [TBL] [Abstract][Full Text] [Related]
18. Does combing the scalp reduce scalp electrode impedances? Mahajan Y; McArthur G J Neurosci Methods; 2010 May; 188(2):287-9. PubMed ID: 20211649 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of commercially available electrodes and gels for recording of slow EEG potentials. Tallgren P; Vanhatalo S; Kaila K; Voipio J Clin Neurophysiol; 2005 Apr; 116(4):799-806. PubMed ID: 15792889 [TBL] [Abstract][Full Text] [Related]
20. Usefulness of a 1.5 T MRI-compatible EEG electrode system for routine use in the intensive care unit of a tertiary care hospital. Mirsattari SM; Davies-Schinkel C; Young GB; Sharpe MD; Ives JR; Lee DH Epilepsy Res; 2009 Mar; 84(1):28-32. PubMed ID: 19179047 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]