BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 20097675)

  • 21. MicroRNA-145-based differentiation of human mesenchymal stem cells to smooth muscle cells.
    Pajoohesh M; Naderi-Manesh H; Soleimani M
    Biotechnol Lett; 2016 Nov; 38(11):1975-1981. PubMed ID: 27439694
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NANOG Restores Contractility of Mesenchymal Stem Cell-Based Senescent Microtissues.
    Shahini A; Mistriotis P; Asmani M; Zhao R; Andreadis ST
    Tissue Eng Part A; 2017 Jun; 23(11-12):535-545. PubMed ID: 28125933
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells.
    Ross JJ; Hong Z; Willenbring B; Zeng L; Isenberg B; Lee EH; Reyes M; Keirstead SA; Weir EK; Tranquillo RT; Verfaillie CM
    J Clin Invest; 2006 Dec; 116(12):3139-49. PubMed ID: 17099777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional characterization and transcriptome analysis of embryonic stem cell-derived contractile smooth muscle cells.
    Potta SP; Liang H; Pfannkuche K; Winkler J; Chen S; Doss MX; Obernier K; Kamisetti N; Schulz H; Hübner N; Hescheler J; Sachinidis A
    Hypertension; 2009 Feb; 53(2):196-204. PubMed ID: 19064816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human amniotic fluid stem cell differentiation along smooth muscle lineage.
    Ghionzoli M; Repele A; Sartiani L; Costanzi G; Parenti A; Spinelli V; David AL; Garriboli M; Totonelli G; Tian J; Andreadis ST; Cerbai E; Mugelli A; Messineo A; Pierro A; Eaton S; De Coppi P
    FASEB J; 2013 Dec; 27(12):4853-65. PubMed ID: 23995291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transforming growth factor-beta1 signaling contributes to development of smooth muscle cells from embryonic stem cells.
    Sinha S; Hoofnagle MH; Kingston PA; McCanna ME; Owens GK
    Am J Physiol Cell Physiol; 2004 Dec; 287(6):C1560-8. PubMed ID: 15306544
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of contractility of purified smooth muscle cells derived from embryonic stem cells.
    Sinha S; Wamhoff BR; Hoofnagle MH; Thomas J; Neppl RL; Deering T; Helmke BP; Bowles DK; Somlyo AV; Owens GK
    Stem Cells; 2006 Jul; 24(7):1678-88. PubMed ID: 16601077
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetically Responsive Bone Marrow Mesenchymal Stem Cell-Derived Smooth Muscle Cells Maintain Their Benefits to Augmenting Elastic Matrix Neoassembly.
    Swaminathan G; Sivaraman B; Moore L; Zborowski M; Ramamurthi A
    Tissue Eng Part C Methods; 2016 Apr; 22(4):301-11. PubMed ID: 26830683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional tissue-engineered blood vessels from bone marrow progenitor cells.
    Liu JY; Swartz DD; Peng HF; Gugino SF; Russell JA; Andreadis ST
    Cardiovasc Res; 2007 Aug; 75(3):618-28. PubMed ID: 17512920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. All-trans retinoic acid promotes smooth muscle cell differentiation of rabbit bone marrow-derived mesenchymal stem cells.
    Su ZY; Li Y; Zhao XL; Zhang M
    J Zhejiang Univ Sci B; 2010 Jul; 11(7):489-96. PubMed ID: 20593513
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of bone marrow-derived progenitor cells in cuff-induced vascular injury in mice.
    Xu Y; Arai H; Zhuge X; Sano H; Murayama T; Yoshimoto M; Heike T; Nakahata T; Nishikawa S; Kita T; Yokode M
    Arterioscler Thromb Vasc Biol; 2004 Mar; 24(3):477-82. PubMed ID: 14739121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The cooperative effects of micro-grooved topography and TGF-β1 on the vascular smooth muscle cell contractile protein expression of the mesenchymal stem cells.
    Abolhasani S; Rajabibazl M; Khani MM; Parandakh A; Hoseinpoor R
    Differentiation; 2020; 115():22-29. PubMed ID: 32784008
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Age-related increase of stem marker expression influences vascular smooth muscle cell properties.
    Ferlosio A; Arcuri G; Doldo E; Scioli MG; De Falco S; Spagnoli LG; Orlandi A
    Atherosclerosis; 2012 Sep; 224(1):51-7. PubMed ID: 22857896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vascular smooth muscle cell phenotypic transition regulates gap junctions of cardiomyocyte.
    Zhou E; Zhang T; Bi C; Wang C; Zhang Z
    Heart Vessels; 2020 Jul; 35(7):1025-1035. PubMed ID: 32270355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Smooth muscle cells and myofibroblasts use distinct transcriptional mechanisms for smooth muscle alpha-actin expression.
    Gan Q; Yoshida T; Li J; Owens GK
    Circ Res; 2007 Oct; 101(9):883-92. PubMed ID: 17823374
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation of bone marrow stromal cell-derived smooth muscle cells by a human SM22alpha promoter: in vitro differentiation of putative smooth muscle progenitor cells of bone marrow.
    Kashiwakura Y; Katoh Y; Tamayose K; Konishi H; Takaya N; Yuhara S; Yamada M; Sugimoto K; Daida H
    Circulation; 2003 Apr; 107(16):2078-81. PubMed ID: 12707231
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maintaining Elastogenicity of Mesenchymal Stem Cell-Derived Smooth Muscle Cells in Two-Dimensional Culture.
    Dahal S; Broekelman T; Mecham RP; Ramamurthi A
    Tissue Eng Part A; 2018 Jun; 24(11-12):979-989. PubMed ID: 29264957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphatidylinositol 3-kinase/Akt pathway is involved in transforming growth factor-beta1-induced phenotypic modulation of 10T1/2 cells to smooth muscle cells.
    Lien SC; Usami S; Chien S; Chiu JJ
    Cell Signal; 2006 Aug; 18(8):1270-8. PubMed ID: 16310342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mast cell chymase inhibits smooth muscle cell growth and collagen expression in vitro: transforming growth factor-beta1-dependent and -independent effects.
    Wang Y; Shiota N; Leskinen MJ; Lindstedt KA; Kovanen PT
    Arterioscler Thromb Vasc Biol; 2001 Dec; 21(12):1928-33. PubMed ID: 11742866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. miR-30e targets IGF2-regulated osteogenesis in bone marrow-derived mesenchymal stem cells, aortic smooth muscle cells, and ApoE-/- mice.
    Ding W; Li J; Singh J; Alif R; Vazquez-Padron RI; Gomes SA; Hare JM; Shehadeh LA
    Cardiovasc Res; 2015 Apr; 106(1):131-42. PubMed ID: 25678587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.