These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20097862)

  • 81. Chemotactic signaling by the P1 phosphorylation domain liberated from the CheA histidine kinase of Escherichia coli.
    Garzón A; Parkinson JS
    J Bacteriol; 1996 Dec; 178(23):6752-8. PubMed ID: 8955292
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Anaerobic induction of pyruvate formate-lyase gene expression is mediated by the ArcA and FNR proteins.
    Sawers G; Suppmann B
    J Bacteriol; 1992 Jun; 174(11):3474-8. PubMed ID: 1592804
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS(katF) gene.
    Chang YY; Wang AY; Cronan JE
    Mol Microbiol; 1994 Mar; 11(6):1019-28. PubMed ID: 8022274
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Phosphorylation activity of the response regulator of the two-component signal transduction system AtoS-AtoC in E. coli.
    Lioliou EE; Mimitou EP; Grigoroudis AI; Panagiotidis CH; Panagiotidis CA; Kyriakidis DA
    Biochim Biophys Acta; 2005 Oct; 1725(3):257-68. PubMed ID: 16153782
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Intermolecular complementation of the kinase activity of CheA.
    Swanson RV; Bourret RB; Simon MI
    Mol Microbiol; 1993 May; 8(3):435-41. PubMed ID: 8326858
    [TBL] [Abstract][Full Text] [Related]  

  • 86. arc-dependent thermal regulation and extragenic suppression of the Escherichia coli cytochrome d operon.
    Wall D; Delaney JM; Fayet O; Lipinska B; Yamamoto T; Georgopoulos C
    J Bacteriol; 1992 Oct; 174(20):6554-62. PubMed ID: 1328158
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Mechanism of metal ion-induced activation of a two-component sensor kinase.
    Affandi T; McEvoy MM
    Biochem J; 2019 Jan; 476(1):115-135. PubMed ID: 30530842
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Repression of the gene encoding succinate dehydrogenase in response to glucose is mediated by the EIICB(Glc) protein in Escherichia coli.
    Takeda S; Matsushika A; Mizuno T
    J Biochem; 1999 Aug; 126(2):354-60. PubMed ID: 10423529
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Kinetics of CheA autophosphorylation and dephosphorylation reactions.
    Tawa P; Stewart RC
    Biochemistry; 1994 Jun; 33(25):7917-24. PubMed ID: 8011654
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Phosphotransfer site of the chemotaxis-specific protein kinase CheA as revealed by NMR.
    Zhou H; Dahlquist FW
    Biochemistry; 1997 Jan; 36(4):699-710. PubMed ID: 9020767
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Functional characterization of the histidine kinase of the E. coli two-component signal transduction system AtoS-AtoC.
    Filippou PS; Kasemian LD; Panagiotidis CA; Kyriakidis DA
    Biochim Biophys Acta; 2008 Sep; 1780(9):1023-31. PubMed ID: 18534200
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Interaction between the CheY response regulator and the histidine-containing phosphotransfer (HPt) domain of the ArcB sensory kinase in Escherichia coli.
    Yaku H; Kato M; Hakoshima T; Tsuzuki M; Mizuno T
    FEBS Lett; 1997 May; 408(3):337-40. PubMed ID: 9188789
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Visualizing autophosphorylation in histidine kinases.
    Casino P; Miguel-Romero L; Marina A
    Nat Commun; 2014; 5():3258. PubMed ID: 24500224
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The fumarate/succinate antiporter DcuB of Escherichia coli is a bifunctional protein with sites for regulation of DcuS-dependent gene expression.
    Kleefeld A; Ackermann B; Bauer J; Kra Mer J; Unden G
    J Biol Chem; 2009 Jan; 284(1):265-275. PubMed ID: 18957436
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS.
    Gudipaty SA; Larsen AS; Rensing C; McEvoy MM
    FEMS Microbiol Lett; 2012 May; 330(1):30-7. PubMed ID: 22348296
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Adaptation of Escherichia coli to redox environments by gene expression.
    Iuchi S; Lin EC
    Mol Microbiol; 1993 Jul; 9(1):9-15. PubMed ID: 8412675
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli.
    Eguchi Y; Utsumi R
    J Bacteriol; 2014 Sep; 196(17):3140-9. PubMed ID: 24957621
    [TBL] [Abstract][Full Text] [Related]  

  • 98. The histidine kinase CusS senses silver ions through direct binding by its sensor domain.
    Gudipaty SA; McEvoy MM
    Biochim Biophys Acta; 2014 Sep; 1844(9):1656-61. PubMed ID: 24948475
    [TBL] [Abstract][Full Text] [Related]  

  • 99. ArcS, the cognate sensor kinase in an atypical Arc system of Shewanella oneidensis MR-1.
    Lassak J; Henche AL; Binnenkade L; Thormann KM
    Appl Environ Microbiol; 2010 May; 76(10):3263-74. PubMed ID: 20348304
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Genetics and regulation of the major enzymes of alanine synthesis in Escherichia coli.
    Kim SH; Schneider BL; Reitzer L
    J Bacteriol; 2010 Oct; 192(20):5304-11. PubMed ID: 20729367
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.