These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 20097976)

  • 1. Plasma directed assembly and organization: bottom-up nanopatterning using top-down technology.
    Vourdas N; Kontziampasis D; Kokkoris G; Constantoudis V; Goodyear A; Tserepi A; Cooke M; Gogolides E
    Nanotechnology; 2010 Feb; 21(8):85302. PubMed ID: 20097976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of three-dimensional ordered nanodot array structures by a thermal dewetting method.
    Li Z; Yoshino M; Yamanaka A
    Nanotechnology; 2012 Dec; 23(48):485303. PubMed ID: 23124270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of nanostripe surface structure by multilayer film deposition combined with micropatterning.
    Ando Y; Miyake K; Mizuno A; Korenaga A; Nakano M; Mano H
    Nanotechnology; 2010 Mar; 21(9):095304. PubMed ID: 20124659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colloidal lithographic nanopatterning via reactive ion etching.
    Choi DG; Yu HK; Jang SG; Yang SM
    J Am Chem Soc; 2004 Jun; 126(22):7019-25. PubMed ID: 15174872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-organized nanodot pattern fabrication using the reverse sputtering method.
    Iwata N; Mori G; Arai N; Murakami Y; Takahashi A
    Nanotechnology; 2010 Sep; 21(36):365301. PubMed ID: 20699486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technologies for nanofluidic systems: top-down vs. bottom-up--a review.
    Mijatovic D; Eijkel JC; van den Berg A
    Lab Chip; 2005 May; 5(5):492-500. PubMed ID: 15856084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single, aligned carbon nanotubes in 3D nanoscale architectures enabled by top-down and bottom-up manufacturable processes.
    Kaul AB; Megerian KG; von Allmen P; Baron RL
    Nanotechnology; 2009 Feb; 20(7):075303. PubMed ID: 19417414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A nonlithographic top-down electrochemical approach for creating hierarchical (micro-nano) superhydrophobic silicon surfaces.
    Wang MF; Raghunathan N; Ziaie B
    Langmuir; 2007 Feb; 23(5):2300-3. PubMed ID: 17266346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mass fabrication of resistive random access crossbar arrays by step and flash imprint lithography.
    Yun DK; Kim KD; Kim S; Lee JH; Park HH; Jeong JH; Choi YK; Choi DG
    Nanotechnology; 2009 Nov; 20(44):445305. PubMed ID: 19809105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Top-Down/Bottom-Up Strategy Using Superwettability for the Fabrication of Patterned Colloidal Assembly.
    Wang Y; Wei C; Cong H; Yang Q; Wu Y; Su B; Zhao Y; Wang J; Jiang L
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4985-93. PubMed ID: 26824430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding DNA to create nanoscale shapes and patterns.
    Rothemund PW
    Nature; 2006 Mar; 440(7082):297-302. PubMed ID: 16541064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of self-assembly of lithographically patternable block copolymer films.
    Bosworth JK; Paik MY; Ruiz R; Schwartz EL; Huang JQ; Ko AW; Smilgies DM; Black CT; Ober CK
    ACS Nano; 2008 Jul; 2(7):1396-402. PubMed ID: 19206307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Top-down fabrication of sub-30 nm monocrystalline silicon nanowires using conventional microfabrication.
    Chen S; Bomer JG; van der Wiel WG; Carlen ET; van den Berg A
    ACS Nano; 2009 Nov; 3(11):3485-92. PubMed ID: 19856905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Top-down approaches to the formation of silica nanoparticle patterns.
    Xia D; Li D; Ku Z; Luo Y; Brueck SR
    Langmuir; 2007 May; 23(10):5377-85. PubMed ID: 17425349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructure engineering by templated self-assembly of block copolymers.
    Cheng JY; Mayes AM; Ross CA
    Nat Mater; 2004 Nov; 3(11):823-8. PubMed ID: 15467725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering silicon oxide surfaces using self-assembled monolayers.
    Onclin S; Ravoo BJ; Reinhoudt DN
    Angew Chem Int Ed Engl; 2005 Oct; 44(39):6282-304. PubMed ID: 16172993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionalizing hydrogen-bonded surface networks with self-assembled monolayers.
    Madueno R; Räisänen MT; Silien C; Buck M
    Nature; 2008 Jul; 454(7204):618-21. PubMed ID: 18668104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective nanopatterning using citrate-stabilized Au nanoparticles and cystein-modified amphiphilic protein.
    Laaksonen P; Kivioja J; Paananen A; Kainlauri M; Kontturi K; Ahopelto J; Linder MB
    Langmuir; 2009 May; 25(9):5185-92. PubMed ID: 19253945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The fabrication of periodic metal nanodot arrays through pulsed laser melting induced fragmentation of metal nanogratings.
    Xia Q; Chou SY
    Nanotechnology; 2009 Jul; 20(28):285310. PubMed ID: 19546488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.