BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 20098320)

  • 1. Oxidative stress and muscle homeostasis.
    Musarò A; Fulle S; Fanò G
    Curr Opin Clin Nutr Metab Care; 2010 May; 13(3):236-42. PubMed ID: 20098320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox homeostasis, oxidative stress and disuse muscle atrophy.
    Pellegrino MA; Desaphy JF; Brocca L; Pierno S; Camerino DC; Bottinelli R
    J Physiol; 2011 May; 589(Pt 9):2147-60. PubMed ID: 21320887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress and disuse muscle atrophy: cause or consequence?
    Powers SK; Smuder AJ; Judge AR
    Curr Opin Clin Nutr Metab Care; 2012 May; 15(3):240-5. PubMed ID: 22466926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox Control of Proteolysis During Inactivity-Induced Skeletal Muscle Atrophy.
    Powers SK; Ozdemir M; Hyatt H
    Antioxid Redox Signal; 2020 Sep; 33(8):559-569. PubMed ID: 31941357
    [No Abstract]   [Full Text] [Related]  

  • 5. Oxidative Stress-Mediated Skeletal Muscle Degeneration: Molecules, Mechanisms, and Therapies.
    Choi MH; Ow JR; Yang ND; Taneja R
    Oxid Med Cell Longev; 2016; 2016():6842568. PubMed ID: 26798425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle Redox Signaling: Engaged in Sickness and in Health.
    Fortunato RS; Louzada RA
    Antioxid Redox Signal; 2020 Sep; 33(8):539-541. PubMed ID: 32336119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antioxidant signaling in skeletal muscle: a brief review.
    Ji LL
    Exp Gerontol; 2007 Jul; 42(7):582-93. PubMed ID: 17467943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox Homeostasis in Age-Related Muscle Atrophy.
    Sakellariou GK; McDonagh B
    Adv Exp Med Biol; 2018; 1088():281-306. PubMed ID: 30390257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related changes in skeletal muscle reactive oxygen species generation and adaptive responses to reactive oxygen species.
    Jackson MJ; McArdle A
    J Physiol; 2011 May; 589(Pt 9):2139-45. PubMed ID: 21320885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic links between oxidative stress and disuse muscle atrophy.
    Powers SK; Smuder AJ; Criswell DS
    Antioxid Redox Signal; 2011 Nov; 15(9):2519-28. PubMed ID: 21457104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using MRI to measure in vivo free radical production and perfusion dynamics in a mouse model of elevated oxidative stress and neurogenic atrophy.
    Ahn B; Smith N; Saunders D; Ranjit R; Kneis P; Towner RA; Van Remmen H
    Redox Biol; 2019 Sep; 26():101308. PubMed ID: 31470261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox control of skeletal muscle atrophy.
    Powers SK; Morton AB; Ahn B; Smuder AJ
    Free Radic Biol Med; 2016 Sep; 98():208-217. PubMed ID: 26912035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Skeletal muscle is a primary target of SOD1G93A-mediated toxicity.
    Dobrowolny G; Aucello M; Rizzuto E; Beccafico S; Mammucari C; Boncompagni S; Belia S; Wannenes F; Nicoletti C; Del Prete Z; Rosenthal N; Molinaro M; Protasi F; Fanò G; Sandri M; Musarò A
    Cell Metab; 2008 Nov; 8(5):425-36. PubMed ID: 19046573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutathione and Nitric Oxide: Key Team Players in Use and Disuse of Skeletal Muscle.
    Baldelli S; Ciccarone F; Limongi D; Checconi P; Palamara AT; Ciriolo MR
    Nutrients; 2019 Sep; 11(10):. PubMed ID: 31575008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging roles of ER stress and unfolded protein response pathways in skeletal muscle health and disease.
    Bohnert KR; McMillan JD; Kumar A
    J Cell Physiol; 2018 Jan; 233(1):67-78. PubMed ID: 28177127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle.
    Powers SK; Talbert EE; Adhihetty PJ
    J Physiol; 2011 May; 589(Pt 9):2129-38. PubMed ID: 21224240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Exercise-Induced ROS on the Pathophysiological Functions of Skeletal Muscle.
    Wang F; Wang X; Liu Y; Zhang Z
    Oxid Med Cell Longev; 2021; 2021():3846122. PubMed ID: 34630848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response and adaptation of skeletal muscle to exercise--the role of reactive oxygen species.
    Niess AM; Simon P
    Front Biosci; 2007 Sep; 12():4826-38. PubMed ID: 17569613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidative stress and disuse muscle atrophy.
    Powers SK; Kavazis AN; McClung JM
    J Appl Physiol (1985); 2007 Jun; 102(6):2389-97. PubMed ID: 17289908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle redox disturbances and oxidative stress as pathomechanisms and therapeutic targets in early-onset myopathies.
    Moulin M; Ferreiro A
    Semin Cell Dev Biol; 2017 Apr; 64():213-223. PubMed ID: 27531051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.