These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 20098414)

  • 1. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism.
    Gegear RJ; Foley LE; Casselman A; Reppert SM
    Nature; 2010 Feb; 463(7282):804-7. PubMed ID: 20098414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryptochrome 1 mediates light-dependent inclination magnetosensing in monarch butterflies.
    Wan G; Hayden AN; Iiams SE; Merlin C
    Nat Commun; 2021 Feb; 12(1):771. PubMed ID: 33536422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cryptochrome-positive and -negative clock neurons in Drosophila entrain differentially to light and temperature.
    Yoshii T; Hermann C; Helfrich-Förster C
    J Biol Rhythms; 2010 Dec; 25(6):387-98. PubMed ID: 21135155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila.
    Gegear RJ; Casselman A; Waddell S; Reppert SM
    Nature; 2008 Aug; 454(7207):1014-8. PubMed ID: 18641630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryptochrome-dependent magnetic field effect on seizure response in Drosophila larvae.
    Marley R; Giachello CN; Scrutton NS; Baines RA; Jones AR
    Sci Rep; 2014 Jul; 4():5799. PubMed ID: 25052424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation.
    Zhu H; Sauman I; Yuan Q; Casselman A; Emery-Le M; Emery P; Reppert SM
    PLoS Biol; 2008 Jan; 6(1):e4. PubMed ID: 18184036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic analysis of circadian responses to low frequency electromagnetic fields in Drosophila melanogaster.
    Fedele G; Edwards MD; Bhutani S; Hares JM; Murbach M; Green EW; Dissel S; Hastings MH; Rosato E; Kyriacou CP
    PLoS Genet; 2014 Dec; 10(12):e1004804. PubMed ID: 25473952
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Foley LE; Emery P
    J Biol Rhythms; 2020 Feb; 35(1):16-27. PubMed ID: 31599203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila's circadian clock.
    Yoshii T; Ahmad M; Helfrich-Förster C
    PLoS Biol; 2009 Apr; 7(4):e1000086. PubMed ID: 19355790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRYPTOCHROME mediates behavioral executive choice in response to UV light.
    Baik LS; Fogle KJ; Roberts L; Galschiodt AM; Chevez JA; Recinos Y; Nguy V; Holmes TC
    Proc Natl Acad Sci U S A; 2017 Jan; 114(4):776-781. PubMed ID: 28062690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drosophila CRY Entrains Clocks in Body Tissues to Light and Maintains Passive Membrane Properties in a Non-clock Body Tissue Independent of Light.
    Agrawal P; Houl JH; Gunawardhana KL; Liu T; Zhou J; Zoran MJ; Hardin PE
    Curr Biol; 2017 Aug; 27(16):2431-2441.e3. PubMed ID: 28781048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate.
    Fogle KJ; Parson KG; Dahm NA; Holmes TC
    Science; 2011 Mar; 331(6023):1409-13. PubMed ID: 21385718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception.
    Busza A; Emery-Le M; Rosbash M; Emery P
    Science; 2004 Jun; 304(5676):1503-6. PubMed ID: 15178801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role of cryptochrome for magnetic field-dependent improvement of sleep quality, lifespan, and motor function in Drosophila.
    Kawasaki H; Okano H; Ishiwatari H; Kishi T; Ishida N
    Genes Cells; 2023 Jul; 28(7):496-502. PubMed ID: 37096945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human cryptochrome exhibits light-dependent magnetosensitivity.
    Foley LE; Gegear RJ; Reppert SM
    Nat Commun; 2011 Jun; 2():356. PubMed ID: 21694704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mosquito cryptochromes expressed in Drosophila confer species-specific behavioral light responses.
    Au DD; Foden AJ; Park SJ; Nguyen TH; Liu JC; Tran MD; Jaime OG; Yu Z; Holmes TC
    Curr Biol; 2022 Sep; 32(17):3731-3744.e4. PubMed ID: 35914532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-dependent reactions of animal circadian photoreceptor cryptochrome.
    Ozturk N
    FEBS J; 2022 Nov; 289(21):6622-6639. PubMed ID: 34750956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Millitesla magnetic field effects on the photocycle of an animal cryptochrome.
    Sheppard DM; Li J; Henbest KB; Neil SR; Maeda K; Storey J; Schleicher E; Biskup T; Rodriguez R; Weber S; Hore PJ; Timmel CR; Mackenzie SR
    Sci Rep; 2017 Feb; 7():42228. PubMed ID: 28176875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of zebrafish cryptochrome2 and 4 expression in UV cone photoreceptors.
    Balay SD; Widen SA; Waskiewicz AJ
    Gene Expr Patterns; 2020 Jan; 35():119100. PubMed ID: 32088341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of an electric field on sleep quality and life span mediated by ultraviolet (UV)-A/blue light photoreceptor CRYPTOCHROME in Drosophila.
    Kawasaki H; Okano H; Nedachi T; Nakagawa-Yagi Y; Hara A; Ishida N
    Sci Rep; 2021 Oct; 11(1):20543. PubMed ID: 34654874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.