BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

485 related articles for article (PubMed ID: 20098491)

  • 1. Elevated levels of the polo kinase Cdc5 override the Mec1/ATR checkpoint in budding yeast by acting at different steps of the signaling pathway.
    Donnianni RA; Ferrari M; Lazzaro F; Clerici M; Tamilselvan Nachimuthu B; Plevani P; Muzi-Falconi M; Pellicioli A
    PLoS Genet; 2010 Jan; 6(1):e1000763. PubMed ID: 20098491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CDC5 inhibits the hyperphosphorylation of the checkpoint kinase Rad53, leading to checkpoint adaptation.
    Vidanes GM; Sweeney FD; Galicia S; Cheung S; Doyle JP; Durocher D; Toczyski DP
    PLoS Biol; 2010 Jan; 8(1):e1000286. PubMed ID: 20126259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tid1/Rdh54 translocase is phosphorylated through a Mec1- and Rad53-dependent manner in the presence of DSB lesions in budding yeast.
    Ferrari M; Nachimuthu BT; Donnianni RA; Klein H; Pellicioli A
    DNA Repair (Amst); 2013 May; 12(5):347-55. PubMed ID: 23473644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mec1
    Memisoglu G; Lanz MC; Eapen VV; Jordan JM; Lee K; Smolka MB; Haber JE
    Cell Rep; 2019 Jul; 28(4):1090-1102.e3. PubMed ID: 31340146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplays between ATM/Tel1 and ATR/Mec1 in sensing and signaling DNA double-strand breaks.
    Gobbini E; Cesena D; Galbiati A; Lockhart A; Longhese MP
    DNA Repair (Amst); 2013 Oct; 12(10):791-9. PubMed ID: 23953933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced kinase activity of polo kinase Cdc5 affects chromosome stability and DNA damage response in S. cerevisiae.
    Rawal CC; Riccardo S; Pesenti C; Ferrari M; Marini F; Pellicioli A
    Cell Cycle; 2016 Nov; 15(21):2906-2919. PubMed ID: 27565373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mec1/ATR regulates the generation of single-stranded DNA that attenuates Tel1/ATM signaling at DNA ends.
    Clerici M; Trovesi C; Galbiati A; Lucchini G; Longhese MP
    EMBO J; 2014 Feb; 33(3):198-216. PubMed ID: 24357557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ddc2ATRIP promotes Mec1ATR activation at RPA-ssDNA tracts.
    Biswas H; Goto G; Wang W; Sung P; Sugimoto K
    PLoS Genet; 2019 Aug; 15(8):e1008294. PubMed ID: 31369547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Association of Rad9 with double-strand breaks through a Mec1-dependent mechanism.
    Naiki T; Wakayama T; Nakada D; Matsumoto K; Sugimoto K
    Mol Cell Biol; 2004 Apr; 24(8):3277-85. PubMed ID: 15060150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of the budding yeast securin Pds1 but not Rad53 correlates with double-strand break-associated G2/M cell cycle arrest in a mec1 hypomorphic mutant.
    Sun M; Fasullo M
    Cell Cycle; 2007 Aug; 6(15):1896-902. PubMed ID: 17671432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A truncated DNA-damage-signaling response is activated after DSB formation in the G1 phase of Saccharomyces cerevisiae.
    Janke R; Herzberg K; Rolfsmeier M; Mar J; Bashkirov VI; Haghnazari E; Cantin G; Yates JR; Heyer WD
    Nucleic Acids Res; 2010 Apr; 38(7):2302-13. PubMed ID: 20061370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sae2 antagonizes Rad9 accumulation at DNA double-strand breaks to attenuate checkpoint signaling and facilitate end resection.
    Yu TY; Kimble MT; Symington LS
    Proc Natl Acad Sci U S A; 2018 Dec; 115(51):E11961-E11969. PubMed ID: 30510002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the Saccharomyces cerevisiae Rad53 checkpoint kinase in signaling double-strand breaks during the meiotic cell cycle.
    Cartagena-Lirola H; Guerini I; Manfrini N; Lucchini G; Longhese MP
    Mol Cell Biol; 2008 Jul; 28(14):4480-93. PubMed ID: 18505828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mre11 nuclease activity and Ctp1 regulate Chk1 activation by Rad3ATR and Tel1ATM checkpoint kinases at double-strand breaks.
    Limbo O; Porter-Goff ME; Rhind N; Russell P
    Mol Cell Biol; 2011 Feb; 31(3):573-83. PubMed ID: 21098122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Polo-like kinase Cdc5 in the meiosis recombination checkpoint.
    Iacovella MG; Daly CN; Kelly JS; Michielsen AJ; Clyne RK
    Cell Cycle; 2010 Mar; 9(6):1182-93. PubMed ID: 20237423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual role for Saccharomyces cerevisiae Tel1 in the checkpoint response to double-strand breaks.
    Mantiero D; Clerici M; Lucchini G; Longhese MP
    EMBO Rep; 2007 Apr; 8(4):380-7. PubMed ID: 17347674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Polo kinase Cdc5 is regulated at multiple levels in the adaptation response to telomere dysfunction.
    Coutelier H; Ilioaia O; Le Peillet J; Hamon M; D'Amours D; Teixeira MT; Xu Z
    Genetics; 2023 Jan; 223(1):. PubMed ID: 36342193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cdc5 blocks in vivo Rad53 activity, but not in situ activity (ISA).
    Lopez-Mosqueda J; Vidanes GM; Toczyski DP
    Cell Cycle; 2010 Nov; 9(21):4266-8. PubMed ID: 20962588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Requirement of the Mre11 complex and exonuclease 1 for activation of the Mec1 signaling pathway.
    Nakada D; Hirano Y; Sugimoto K
    Mol Cell Biol; 2004 Nov; 24(22):10016-25. PubMed ID: 15509802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Yeast PP4 interacts with ATR homolog Ddc2-Mec1 and regulates checkpoint signaling.
    Hustedt N; Seeber A; Sack R; Tsai-Pflugfelder M; Bhullar B; Vlaming H; van Leeuwen F; Guénolé A; van Attikum H; Srivas R; Ideker T; Shimada K; Gasser SM
    Mol Cell; 2015 Jan; 57(2):273-89. PubMed ID: 25533186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.