These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 20098564)

  • 1. Target foil rupture scenario and provision for handling different models of medical cyclotrons used in India.
    Shaiju VS; Sharma SD; Kumar R; Sarin B
    J Med Phys; 2009 Jul; 34(3):161-6. PubMed ID: 20098564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting induced activity in the Havar foils of the (18)F production targets of a PET cyclotron and derived radiological risk.
    Martinez-Serrano JJ; Diez de Los Rios A
    Health Phys; 2014 Aug; 107(2):103-10. PubMed ID: 24978281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Practical experience and challenges in the operation of medical cyclotron.
    Kumar R; Sonkawade RG; Pandey AK; Tripathi M; Damle NA; Kumar P; Bal CS
    Nucl Med Commun; 2017 Jan; 38(1):10-14. PubMed ID: 27755293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiation surveillance in and around cyclotron facility.
    Kaur A; Sharma S; Mittal B
    Indian J Nucl Med; 2012 Oct; 27(4):243-5. PubMed ID: 24019654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurements of activation products associated with Havar foils from a GE PETtrace medical cyclotron using high resolution gamma spectroscopy.
    Manickam V; Brey RR; Jenkins PA; Christian PE
    Health Phys; 2009 Feb; 96(2 Suppl):S37-42. PubMed ID: 19125055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Initial experience with an 11 MeV self-shielded medical cyclotron on operation and radiation safety.
    Pant GS; Senthamizhchelvan S
    J Med Phys; 2007 Jul; 32(3):118-23. PubMed ID: 21157531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Taking cyclotron
    Nelson BJB; Wilson J; Richter S; Duke MJM; Wuest M; Wuest F
    Nucl Med Biol; 2020; 80-81():24-31. PubMed ID: 32004935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Operational radiation safety for PET-CT, SPECT-CT, and cyclotron facilities.
    Zanzonico P; Dauer L; St Germain J
    Health Phys; 2008 Nov; 95(5):554-70. PubMed ID: 18849690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radioactive by-products of a self-shielded cyclotron and the liquid target system for F-18 routine production.
    Kambali I; Suryanto H; Parwanto
    Australas Phys Eng Sci Med; 2016 Jun; 39(2):403-12. PubMed ID: 26867652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the residual radioactivity induced in the front foil of a target assembly in a modern medical cyclotron.
    O'Donnell RG; León Vintró L; Duffy GJ; Mitchell PI
    Appl Radiat Isot; 2004; 60(2-4):539-42. PubMed ID: 14987699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of self-shielded cyclotron operation on small-animal PET/CT equipment installed nearby, on the floor just above.
    Kubo H; Otani T; Otsuka H; Harada M
    J Med Invest; 2014; 61(1-2):46-52. PubMed ID: 24705748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the neutron dose field around a biomedical cyclotron: FLUKA simulation and experimental measurements.
    Infantino A; Cicoria G; Lucconi G; Pancaldi D; Vichi S; Zagni F; Mostacci D; Marengo M
    Phys Med; 2016 Dec; 32(12):1602-1608. PubMed ID: 27919623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutron measurements in the vicinity of a self-shielded PET cyclotron.
    Hertel NE; Shannon MP; Wang ZL; Valenzano MP; Mengesha W; Crowe RJ
    Radiat Prot Dosimetry; 2004; 108(3):255-61. PubMed ID: 15031447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analytical approach of thermodynamic behavior in a gas target system on a medical cyclotron.
    Jahangiri P; Zacchia NA; Buckley K; Bénard F; Schaffer P; Martinez DM; Hoehr C
    Appl Radiat Isot; 2016 Jan; 107():252-258. PubMed ID: 26562450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preliminary safety evaluation of a cyclotron facility for positron emission tomography imaging.
    González L; Vañó E; Cordeiro CA; Carreras JL
    Eur J Nucl Med; 1999 Aug; 26(8):894-9. PubMed ID: 10436203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental measurement and Monte Carlo assessment of Argon-41 production in a PET cyclotron facility.
    Infantino A; Valtieri L; Cicoria G; Pancaldi D; Mostacci D; Marengo M
    Phys Med; 2015 Dec; 31(8):991-996. PubMed ID: 26420444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Decommissioning of the medical cyclotron in National Center of Neurology and Psychiatry].
    Ito K; Nakata Y; Matsuda H; Sato N
    Kaku Igaku; 2011 May; 48(2):109-19. PubMed ID: 21736041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monte Carlo neutron doses estimations inside a PET cyclotron vault room.
    Barquero R; Méndez R; Martí-Climent JM; Quincoces G
    Radiat Prot Dosimetry; 2007; 126(1-4):477-81. PubMed ID: 17504752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of [
    Nkepang GN; Gali H; Houson H; Hedrick AF; Hayes B; Causey O; Inman P; Box J; Benton E; Galbraith W; Awasthi V
    Appl Radiat Isot; 2019 Aug; 150():19-24. PubMed ID: 31108335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decommissioning procedures for an 11 MeV self-shielded medical cyclotron after 16 years of working time.
    Calandrino R; del Vecchio A; Savi A; Todde S; Griffoni V; Brambilla S; Parisi R; Simone G; Fazio F
    Health Phys; 2006 Jun; 90(6):588-96. PubMed ID: 16691108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.