These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 20098620)

  • 21. Molecular evidence regarding the origin of echolocation and flight in bats.
    Teeling EC; Scally M; Kao DJ; Romagnoli ML; Springer MS; Stanhope MJ
    Nature; 2000 Jan; 403(6766):188-92. PubMed ID: 10646602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parallel evolution of the glycogen synthase 1 (muscle) gene Gys1 between Old World and New World fruit bats (Order: Chiroptera).
    Fang L; Shen B; Irwin DM; Zhang S
    Biochem Genet; 2014 Oct; 52(9-10):443-58. PubMed ID: 25001420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The voltage-gated potassium channel subfamily KQT member 4 (KCNQ4) displays parallel evolution in echolocating bats.
    Liu Y; Han N; Franchini LF; Xu H; Pisciottano F; Elgoyhen AB; Rajan KE; Zhang S
    Mol Biol Evol; 2012 May; 29(5):1441-50. PubMed ID: 22319145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gene structure and evolution of transthyretin in the order Chiroptera.
    Khwanmunee J; Leelawatwattana L; Prapunpoj P
    Genetica; 2016 Feb; 144(1):71-83. PubMed ID: 26681450
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Contrasting patterns of adaptive sequence convergence among echolocating mammals.
    Lambert MJ; Nevue AA; Portfors CV
    Gene; 2017 Mar; 605():1-4. PubMed ID: 28011304
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phylogenomic analyses of bat subordinal relationships based on transcriptome data.
    Lei M; Dong D
    Sci Rep; 2016 Jun; 6():27726. PubMed ID: 27291671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive evolution in the glucose transporter 4 gene Slc2a4 in Old World fruit bats (family: Pteropodidae).
    Shen B; Han X; Zhang J; Rossiter SJ; Zhang S
    PLoS One; 2012; 7(4):e33197. PubMed ID: 22493665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Testing the sensory trade-off hypothesis in New World bats.
    Wu J; Jiao H; Simmons NB; Lu Q; Zhao H
    Proc Biol Sci; 2018 Aug; 285(1885):. PubMed ID: 30158315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The glycogen synthase 2 gene (Gys2) displays parallel evolution between Old World and New World fruit bats.
    Qian Y; Fang T; Shen B; Zhang S
    J Mol Evol; 2014 Jan; 78(1):66-74. PubMed ID: 24258790
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphoenolpyruvate carboxykinase 1 gene (Pck1) displays parallel evolution between Old World and New World fruit bats.
    Zhu L; Yin Q; Irwin DM; Zhang S
    PLoS One; 2015; 10(3):e0118666. PubMed ID: 25807515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prestin shows divergent evolution between constant frequency echolocating bats.
    Shen B; Avila-Flores R; Liu Y; Rossiter SJ; Zhang S
    J Mol Evol; 2011 Oct; 73(3-4):109-15. PubMed ID: 21947331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rod monochromacy and the coevolution of cetacean retinal opsins.
    Meredith RW; Gatesy J; Emerling CA; York VM; Springer MS
    PLoS Genet; 2013 Apr; 9(4):e1003432. PubMed ID: 23637615
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Musculoskeletal morphogenesis supports the convergent evolution of bat laryngeal echolocation.
    Usui K; Yamamoto T; Khannoon ER; Tokita M
    Proc Biol Sci; 2024 Jan; 291(2015):20232196. PubMed ID: 38290542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visual pigment evolution in Characiformes: The dynamic interplay of teleost whole-genome duplication, surviving opsins and spectral tuning.
    Escobar-Camacho D; Carleton KL; Narain DW; Pierotti MER
    Mol Ecol; 2020 Jun; 29(12):2234-2253. PubMed ID: 32421918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Genomes of Two Bat Species with Long Constant Frequency Echolocation Calls.
    Dong D; Lei M; Hua P; Pan YH; Mu S; Zheng G; Pang E; Lin K; Zhang S
    Mol Biol Evol; 2017 Jan; 34(1):20-34. PubMed ID: 27803123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Testing Convergent Evolution in Auditory Processing Genes between Echolocating Mammals and the Aye-Aye, a Percussive-Foraging Primate.
    Bankoff RJ; Jerjos M; Hohman B; Lauterbur ME; Kistler L; Perry GH
    Genome Biol Evol; 2017 Jul; 9(7):1978-1989. PubMed ID: 28810710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accelerated evolution and positive selection of rhodopsin in Tibetan loaches living in high altitude.
    Lv W; Lei Y; Deng Y; Sun N; Liu X; Yang L; He S
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2598-2606. PubMed ID: 33470199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolutionary relationships of the old world fruit bats (Chiroptera, Pteropodidae): another star phylogeny?
    Almeida FC; Giannini NP; DeSalle R; Simmons NB
    BMC Evol Biol; 2011 Sep; 11():281. PubMed ID: 21961908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Independent losses of visual perception genes Gja10 and Rbp3 in echolocating bats (Order: Chiroptera).
    Shen B; Fang T; Dai M; Jones G; Zhang S
    PLoS One; 2013; 8(7):e68867. PubMed ID: 23874796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular evolution and depth-related adaptations of rhodopsin in the adaptive radiation of cichlid fishes in Lake Tanganyika.
    Ricci V; Ronco F; Musilova Z; Salzburger W
    Mol Ecol; 2022 May; 31(10):2882-2897. PubMed ID: 35302684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.