BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 20099357)

  • 21. Whole-body T1 mapping improves the definition of adipose tissue: consequences for automated image analysis.
    Kullberg J; Angelhed JE; Lönn L; Brandberg J; Ahlström H; Frimmel H; Johansson L
    J Magn Reson Imaging; 2006 Aug; 24(2):394-401. PubMed ID: 16786577
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated and reproducible segmentation of visceral and subcutaneous adipose tissue from abdominal MRI.
    Kullberg J; Ahlström H; Johansson L; Frimmel H
    Int J Obes (Lond); 2007 Dec; 31(12):1806-17. PubMed ID: 17593903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated left ventricular segmentation in cardiac MRI.
    Pednekar A; Kurkure U; Muthupillai R; Flamm S; Kakadiaris IA
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1425-8. PubMed ID: 16830947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains.
    Bricq S; Collet Ch; Armspach JP
    Med Image Anal; 2008 Dec; 12(6):639-52. PubMed ID: 18440268
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated detection of prostatic adenocarcinoma from high-resolution ex vivo MRI.
    Madabhushi A; Feldman MD; Metaxas DN; Tomaszeweski J; Chute D
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1611-25. PubMed ID: 16350920
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images.
    Adame IM; van der Geest RJ; Wasserman BA; Mohamed MA; Reiber JH; Lelieveldt BP
    MAGMA; 2004 Apr; 16(5):227-34. PubMed ID: 15029508
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An accurate and robust method for unsupervised assessment of abdominal fat by MRI.
    Positano V; Gastaldelli A; Sironi AM; Santarelli MF; Lombardi M; Landini L
    J Magn Reson Imaging; 2004 Oct; 20(4):684-9. PubMed ID: 15390229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A fully automated algorithm under modified FCM framework for improved brain MR image segmentation.
    Sikka K; Sinha N; Singh PK; Mishra AK
    Magn Reson Imaging; 2009 Sep; 27(7):994-1004. PubMed ID: 19395212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical pilot study for the automatic segmentation and recognition of abdominal adipose tissue compartments from MRI data.
    Noël PB; Bauer JS; Ganter C; Markus C; Rummeny EJ; Hauner H; Engels HP
    Rofo; 2012 Jun; 184(6):548-55. PubMed ID: 22434368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Atlas-based segmentation of 3D cerebral structures with competitive level sets and fuzzy control.
    Ciofolo C; Barillot C
    Med Image Anal; 2009 Jun; 13(3):456-70. PubMed ID: 19362876
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3-D brain segmentation towards the integration of DTI and MRI modalities.
    Sanchez D; Bernal B; Altman N; Adjouadi M; Sanchez D
    Biomed Sci Instrum; 2006; 42():326-31. PubMed ID: 16817629
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Automated 3-dimensional elastic registration of whole-body PET and CT from separate or combined scanners.
    Shekhar R; Walimbe V; Raja S; Zagrodsky V; Kanvinde M; Wu G; Bybel B
    J Nucl Med; 2005 Sep; 46(9):1488-96. PubMed ID: 16157532
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images.
    Cuadra MB; Cammoun L; Butz T; Cuisenaire O; Thiran JP
    IEEE Trans Med Imaging; 2005 Dec; 24(12):1548-65. PubMed ID: 16350916
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase unwrapping of MR images using Phi UN--a fast and robust region growing algorithm.
    Witoszynskyj S; Rauscher A; Reichenbach JR; Barth M
    Med Image Anal; 2009 Apr; 13(2):257-68. PubMed ID: 19070532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Segmentation of rodent whole-body dynamic PET images: an unsupervised method based on voxel dynamics.
    Maroy R; Boisgard R; Comtat C; Frouin V; Cathier P; Duchesnay E; Dollé F; Nielsen PE; Trébossen R; Tavitian B
    IEEE Trans Med Imaging; 2008 Mar; 27(3):342-54. PubMed ID: 18334430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automatic segmentation of magnetic resonance images using a decision tree with spatial information.
    Chao WH; Chen YY; Lin SH; Shih YY; Tsang S
    Comput Med Imaging Graph; 2009 Mar; 33(2):111-21. PubMed ID: 19097854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computer-assisted automatic localization of the human pedunculopontine nucleus in T1-weighted MR images: a preliminary study.
    Fu Y; Gao W; Zhu M; Chen X; Lin Z; Wang S
    Int J Med Robot; 2009 Sep; 5(3):309-18. PubMed ID: 19449308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using a phantom to compare MR techniques for determining the ratio of intraabdominal to subcutaneous adipose tissue.
    Donnelly LF; O'Brien KJ; Dardzinski BJ; Poe SA; Bean JA; Holland SK; Daniels SR
    AJR Am J Roentgenol; 2003 Apr; 180(4):993-8. PubMed ID: 12646443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnetic resonance imaging based determination of body compartments with the versatile, interactive sparse sampling (VISS) method.
    Buehler T; Ramseier N; Machann J; Schwenzer NF; Boesch C
    J Magn Reson Imaging; 2012 Oct; 36(4):951-60. PubMed ID: 22645058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Segmentation and quantification of adipose tissue by magnetic resonance imaging.
    Hu HH; Chen J; Shen W
    MAGMA; 2016 Apr; 29(2):259-76. PubMed ID: 26336839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.