These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 2009953)

  • 1. Fourier transform infrared spectroscopic study on retinochrome and its primary photoproduct, lumiretinochrome.
    Sekiya N; Kishigami A; Naoki H; Chang CW; Yoshihara K; Hara R; Hara T; Tokunaga F
    FEBS Lett; 1991 Mar; 280(1):107-11. PubMed ID: 2009953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FTIR studies of the photoactivation processes in squid retinochrome.
    Furutani Y; Terakita A; Shichida Y; Kandori H
    Biochemistry; 2005 Jun; 44(22):7988-97. PubMed ID: 15924417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Squid retinochrome.
    Sperling L; Hubbard R
    J Gen Physiol; 1975 Feb; 65(2):235-51. PubMed ID: 235007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metaretinochrome in membranes as an effective donor of 11-cis retinal for the synthesis of squid rhodopsin.
    Seki T
    J Gen Physiol; 1984 Jul; 84(1):49-62. PubMed ID: 6747599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid sequence surrounding the retinal-binding site in retinochrome of the squid, Todarodes pacificus.
    Hara-Nishimura I; Kondo M; Nishimura M; Hara R; Hara T
    FEBS Lett; 1993 Nov; 335(1):94-8. PubMed ID: 8243675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal-binding protein as a shuttle for retinal in the rhodopsin-retinochrome system of the squid visual cells.
    Terakita A; Hara R; Hara T
    Vision Res; 1989; 29(6):639-52. PubMed ID: 2626821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Difference in molecular structure of rod and cone visual pigments studied by Fourier transform infrared spectroscopy.
    Imai H; Hirano T; Kandori H; Terakita A; Shichida Y
    Biochemistry; 2001 Mar; 40(9):2879-86. PubMed ID: 11258899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Squid rhodopsin and retinochrome.
    Kito Y; Suzuki T; Sugahara M; Azuma M; Azuma K; Mishima K
    Nat New Biol; 1973 May; 243(123):53-4. PubMed ID: 17315368
    [No Abstract]   [Full Text] [Related]  

  • 9. The rhodopsin-retinochrome system for retinal re-isomerization predates the origin of cephalopod eyes.
    Vöcking O; Leclère L; Hausen H
    BMC Ecol Evol; 2021 Nov; 21(1):215. PubMed ID: 34844573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Squid retinochrome. Configurational changes of the retinal chromophore.
    Ozaki K; Hara R; Hara T; Kakitani T
    Biophys J; 1983 Oct; 44(1):127-37. PubMed ID: 6626676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated.
    Siebert F; Mäntele W; Gerwert K
    Eur J Biochem; 1983 Oct; 136(1):119-27. PubMed ID: 6311543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of rhodopsin and retinochrome in the squid retina.
    Hara T; Hara R
    J Gen Physiol; 1976 Jun; 67(6):791-805. PubMed ID: 6620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Squid m-retinochrome. Two forms of metaretinochrome.
    Hara R; Hara T
    Vision Res; 1984; 24(11):1629-40. PubMed ID: 6533989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants.
    Fahmy K; Jäger F; Beck M; Zvyaga TA; Sakmar TP; Siebert F
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10206-10. PubMed ID: 7901852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fourier-transform infrared difference spectroscopy of rhodopsin and its photoproducts at low temperature.
    Bagley KA; Balogh-Nair V; Croteau AA; Dollinger G; Ebrey TG; Eisenstein L; Hong MK; Nakanishi K; Vittitow J
    Biochemistry; 1985 Oct; 24(22):6055-71. PubMed ID: 4084506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinochrome and rhodopsin in the extraocular photoreceptor of the squid, Todarodes.
    Hara T; Hara R
    J Gen Physiol; 1980 Jan; 75(1):1-19. PubMed ID: 7359116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative study of the infrared difference spectra for octopus and bovine rhodopsins and their bathorhodopsin photointermediates.
    Bagley KA; Eisenstein L; Ebrey TG; Tsuda M
    Biochemistry; 1989 Apr; 28(8):3366-73. PubMed ID: 2742842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodopsin-lumirhodopsin phototransition of bovine rhodopsin investigated by Fourier transform infrared difference spectroscopy.
    Ganter UM; Gärtner W; Siebert F
    Biochemistry; 1988 Sep; 27(19):7480-8. PubMed ID: 3207686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histochemical localization of retinochrome and rhodopsin studied by fluorescence microscopy.
    Ozaki K; Hara R; Hara T
    Cell Tissue Res; 1983; 233(2):335-45. PubMed ID: 6616571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes in the Schiff base region of squid rhodopsin upon photoisomerization studied by low-temperature FTIR spectroscopy.
    Ota T; Furutani Y; Terakita A; Shichida Y; Kandori H
    Biochemistry; 2006 Mar; 45(9):2845-51. PubMed ID: 16503639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.