These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 20099791)

  • 1. Interfacing live cells with nanocarbon substrates.
    Agarwal S; Zhou X; Ye F; He Q; Chen GC; Soo J; Boey F; Zhang H; Chen P
    Langmuir; 2010 Feb; 26(4):2244-7. PubMed ID: 20099791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells.
    Zhang Y; Ali SF; Dervishi E; Xu Y; Li Z; Casciano D; Biris AS
    ACS Nano; 2010 Jun; 4(6):3181-6. PubMed ID: 20481456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturation of osteoblast-like SaoS2 induced by carbon nanotubes.
    Li X; Gao H; Uo M; Sato Y; Akasaka T; Abe S; Feng Q; Cui F; Watari F
    Biomed Mater; 2009 Feb; 4(1):015005. PubMed ID: 18981539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-term cell proliferation in vitro.
    Meng J; Song L; Meng J; Kong H; Zhu G; Wang C; Xu L; Xie S; Xu H
    J Biomed Mater Res A; 2006 Nov; 79(2):298-306. PubMed ID: 16817220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The functionalization of multi-walled carbon nanotubes by in situ deposition of hydroxyapatite.
    Xiao Y; Gong T; Zhou S
    Biomaterials; 2010 Jul; 31(19):5182-90. PubMed ID: 20392491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of an electrically conductive carbon nanotube/collagen composite on neurite outgrowth of PC12 cells.
    Cho Y; Borgens RB
    J Biomed Mater Res A; 2010 Nov; 95(2):510-7. PubMed ID: 20665676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sharper and faster "nano darts" kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube.
    Liu S; Wei L; Hao L; Fang N; Chang MW; Xu R; Yang Y; Chen Y
    ACS Nano; 2009 Dec; 3(12):3891-902. PubMed ID: 19894705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies.
    Ryoo SR; Kim YK; Kim MH; Min DH
    ACS Nano; 2010 Nov; 4(11):6587-98. PubMed ID: 20979372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adhesion of human osteoblast-like cells (Saos-2) to carbon nanotube sheets.
    Akasaka T; Yokoyama A; Matsuoka M; Hashimoto T; Abe S; Uo M; Watari F
    Biomed Mater Eng; 2009; 19(2-3):147-53. PubMed ID: 19581708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced mechanical properties of nanocomposites at low graphene content.
    Rafiee MA; Rafiee J; Wang Z; Song H; Yu ZZ; Koratkar N
    ACS Nano; 2009 Dec; 3(12):3884-90. PubMed ID: 19957928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The chemical and physical characteristics of single-walled carbon nanotube film impact on osteoblastic cell response.
    Tutak W; Chhowalla M; Sesti F
    Nanotechnology; 2010 Aug; 21(31):315102. PubMed ID: 20622299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant single-walled carbon nanotubes.
    Lucente-Schultz RM; Moore VC; Leonard AD; Price BK; Kosynkin DV; Lu M; Partha R; Conyers JL; Tour JM
    J Am Chem Soc; 2009 Mar; 131(11):3934-41. PubMed ID: 19243186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oligodeoxyribonucleotide association with single-walled carbon nanotubes studied by SPM.
    Lahiji RR; Dolash BD; Bergstrom DE; Reifenberger R
    Small; 2007 Nov; 3(11):1912-20. PubMed ID: 17935061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface characterization and cytocompatibility of three chitosan/polycation composite membranes for guided bone regeneration.
    Zheng Z; Wei Y; Wang G; Gong Y; Zhang X
    J Biomater Appl; 2009 Sep; 24(3):209-29. PubMed ID: 18987023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of recombinant human bone morphogenetic protein-7 (rhBMP-7) on the viability, proliferation and differentiation of osteoblast-like cells cultured on a chemically modified titanium surface.
    Togashi AY; Cirano FR; Marques MM; Pustiglioni FE; Lang NP; Lima LA
    Clin Oral Implants Res; 2009 May; 20(5):452-7. PubMed ID: 19250243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of nucleobase-carbon nanotube hybrids.
    Singh P; Kumar J; Toma FM; Raya J; Prato M; Fabre B; Verma S; Bianco A
    J Am Chem Soc; 2009 Sep; 131(37):13555-62. PubMed ID: 19673527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel approach to control growth, orientation, and shape of human osteoblasts.
    Czarnecki JS; Lafdi K; Tsonis PA
    Tissue Eng Part A; 2008 Feb; 14(2):255-65. PubMed ID: 18333778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlled carbon-nanotube junctions self-assembled from graphene nanoribbons.
    He L; Lu JQ; Jiang H
    Small; 2009 Dec; 5(24):2802-6. PubMed ID: 19927297
    [No Abstract]   [Full Text] [Related]  

  • 19. Cell behaviors on polysaccharide-wrapped single-wall carbon nanotubes: a quantitative study of the surface properties of biomimetic nanofibrous scaffolds.
    Zhang X; Meng L; Lu Q
    ACS Nano; 2009 Oct; 3(10):3200-6. PubMed ID: 19719149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-walled carbon nanotubes alter Schwann cell behavior differentially within 2D and 3D environments.
    Behan BL; DeWitt DG; Bogdanowicz DR; Koppes AN; Bale SS; Thompson DM
    J Biomed Mater Res A; 2011 Jan; 96(1):46-57. PubMed ID: 20949573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.