These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 20099799)
1. Theoretical analysis of the resonance assisted hydrogen bond based on the combined extended transition state method and natural orbitals for chemical valence scheme. Kurczab R; Mitoraj MP; Michalak A; Ziegler T J Phys Chem A; 2010 Aug; 114(33):8581-90. PubMed ID: 20099799 [TBL] [Abstract][Full Text] [Related]
2. Multiple boron-boron bonds in neutral molecules: an insight from the extended transition state method and the natural orbitals for chemical valence scheme. Mitoraj MP; Michalak A Inorg Chem; 2011 Mar; 50(6):2168-74. PubMed ID: 21314143 [TBL] [Abstract][Full Text] [Related]
3. Bonding in ammonia borane: an analysis based on the natural orbitals for chemical valence and the extended transition state method (ETS-NOCV). Mitoraj MP J Phys Chem A; 2011 Dec; 115(51):14708-16. PubMed ID: 22085293 [TBL] [Abstract][Full Text] [Related]
4. Orbital overlap and chemical bonding. Krapp A; Bickelhaupt FM; Frenking G Chemistry; 2006 Dec; 12(36):9196-216. PubMed ID: 17024702 [TBL] [Abstract][Full Text] [Related]
5. The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds. Kovács A; Esterhuysen C; Frenking G Chemistry; 2005 Mar; 11(6):1813-25. PubMed ID: 15672434 [TBL] [Abstract][Full Text] [Related]
6. Theoretical description of hydrogen bonding in oxalic acid dimer and trimer based on the combined extended-transition-state energy decomposition analysis and natural orbitals for chemical valence (ETS-NOCV). Mitoraj MP; Kurczab R; Boczar M; Michalak A J Mol Model; 2010 Nov; 16(11):1789-95. PubMed ID: 20505966 [TBL] [Abstract][Full Text] [Related]
7. Direct estimate of the strength of conjugation and hyperconjugation by the energy decomposition analysis method. Fernández I; Frenking G Chemistry; 2006 Apr; 12(13):3617-29. PubMed ID: 16502455 [TBL] [Abstract][Full Text] [Related]
8. Charge transfer interaction of intermolecular hydrogen bonds in 7-azaindole(MeOH)n (n = 1, 2) with IR-dip spectroscopy and natural bond orbital analysis. Kageura Y; Sakota K; Sekiya H J Phys Chem A; 2009 Jun; 113(25):6880-5. PubMed ID: 19496582 [TBL] [Abstract][Full Text] [Related]
9. Intramolecular hydrogen bonding in disubstituted ethanes. A comparison of NH...O- and OH...O- Hydrogen bonding through conformational analysis of 4-amino-4-oxobutanoate (succinamate) and monohydrogen 1,4-butanoate (monohydrogen succinate) anions. Rudner MS; Jeremic S; Petterson KA; Kent DR; Brown KA; Drake MD; Goddard WA; Roberts JD J Phys Chem A; 2005 Oct; 109(40):9076-82. PubMed ID: 16332014 [TBL] [Abstract][Full Text] [Related]
10. Physical nature of interactions in Zn(II) complexes with 2,2'-bipyridyl: quantum theory of atoms in molecules (QTAIM), interacting quantum atoms (IQA), noncovalent interactions (NCI), and extended transition state coupled with natural orbitals for chemical valence (ETS-NOCV) comparative studies. Cukrowski I; de Lange JH; Mitoraj M J Phys Chem A; 2014 Jan; 118(3):623-37. PubMed ID: 24377828 [TBL] [Abstract][Full Text] [Related]
11. Interpretation of hydrogen bonding in the weak and strong regions using conceptual DFT descriptors. Ozen AS; De Proft F; Aviyente V; Geerlings P J Phys Chem A; 2006 May; 110(17):5860-8. PubMed ID: 16640382 [TBL] [Abstract][Full Text] [Related]
12. Accounting for the differences in the structures and relative energies of the highly homoatomic np pi-np pi (n > or = 3)-bonded S2I4 2+, the Se-I pi-bonded Se2I4 2+, and their higher-energy isomers by AIM, MO, NBO, and VB methodologies. Brownridge S; Crawford MJ; Du H; Harcourt RD; Knapp C; Laitinen RS; Passmore J; Rautiainen JM; Suontamo RJ; Valkonen J Inorg Chem; 2007 Feb; 46(3):681-99. PubMed ID: 17257010 [TBL] [Abstract][Full Text] [Related]
13. Non-resonance-assisted hydrogen bonding in hydroxymethylene and aminomethylene cyclobutanones and cyclobutenones and their nitrogen counterparts. Sanz P; Mó O; Yáñez M; Elguero J Chemphyschem; 2007 Sep; 8(13):1950-8. PubMed ID: 17676647 [TBL] [Abstract][Full Text] [Related]
14. Applications of the ETS-NOCV method in descriptions of chemical reactions. Mitoraj MP; Parafiniuk M; Srebro M; Handzlik M; Buczek A; Michalak A J Mol Model; 2011 Sep; 17(9):2337-52. PubMed ID: 21445707 [TBL] [Abstract][Full Text] [Related]
15. A Combined Charge and Energy Decomposition Scheme for Bond Analysis. Mitoraj MP; Michalak A; Ziegler T J Chem Theory Comput; 2009 Apr; 5(4):962-75. PubMed ID: 26609605 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of the intermolecular hydrogen bonds in the polymorphs of paracetamol in relation to crystal packing and conformational transitions: a variable-temperature polarized Raman spectroscopy study. Kolesov BA; Mikhailenko MA; Boldyreva EV Phys Chem Chem Phys; 2011 Aug; 13(31):14243-53. PubMed ID: 21734995 [TBL] [Abstract][Full Text] [Related]
17. Linear M[triple bond]E-Me versus bent M-E-Me: bonding analysis in heavier metal-ylidyne complexes [(Cp)(CO)2M[triple bond]EMe] and metallo-ylidenes [(Cp)(CO)3M-EMe] (M = Cr, Mo, W; E = Si, Ge, Sn, Pb). Pandey KK; Lledós A Inorg Chem; 2009 Apr; 48(7):2748-59. PubMed ID: 19256519 [TBL] [Abstract][Full Text] [Related]
18. Proton dynamics in the strong chelate hydrogen bond of crystalline picolinic acid N-oxide. A new computational approach and infrared, raman and INS study. Stare J; Panek J; Eckert J; Grdadolnik J; Mavri J; Hadzi D J Phys Chem A; 2008 Feb; 112(7):1576-86. PubMed ID: 18225869 [TBL] [Abstract][Full Text] [Related]
19. Covalent versus electrostatic nature of the strong hydrogen bond: discrimination among single, double, and asymmetric single-well hydrogen bonds by variable-temperature X-ray crystallographic methods in beta-diketone enol RAHB systems. Gilli P; Bertolasi V; Pretto L; Ferretti V; Gilli G J Am Chem Soc; 2004 Mar; 126(12):3845-55. PubMed ID: 15038739 [TBL] [Abstract][Full Text] [Related]