These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 20099932)
1. Explicitly solvated ligand contribution to continuum solvation models for binding free energies: selectivity of theophylline binding to an RNA aptamer. Freedman H; Huynh LP; Le L; Cheatham TE; Tuszynski JA; Truong TN J Phys Chem B; 2010 Feb; 114(6):2227-37. PubMed ID: 20099932 [TBL] [Abstract][Full Text] [Related]
2. Free energy calculations for theophylline binding to an RNA aptamer: Comparison of MM-PBSA and thermodynamic integration methods. Gouda H; Kuntz ID; Case DA; Kollman PA Biopolymers; 2003 Jan; 68(1):16-34. PubMed ID: 12579577 [TBL] [Abstract][Full Text] [Related]
3. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Sham YY; Chu ZT; Tao H; Warshel A Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821 [TBL] [Abstract][Full Text] [Related]
4. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy. Guvench O; Weiser J; Shenkin P; Kolossváry I; Still WC J Comput Chem; 2002 Jan; 23(2):214-21. PubMed ID: 11924735 [TBL] [Abstract][Full Text] [Related]
5. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors. Ferrari AM; Degliesposti G; Sgobba M; Rastelli G Bioorg Med Chem; 2007 Dec; 15(24):7865-77. PubMed ID: 17870536 [TBL] [Abstract][Full Text] [Related]
6. Accurate predictions of nonpolar solvation free energies require explicit consideration of binding-site hydration. Genheden S; Mikulskis P; Hu L; Kongsted J; Söderhjelm P; Ryde U J Am Chem Soc; 2011 Aug; 133(33):13081-92. PubMed ID: 21728337 [TBL] [Abstract][Full Text] [Related]
7. Evaluating the molecular mechanics poisson-boltzmann surface area free energy method using a congeneric series of ligands to p38 MAP kinase. Pearlman DA J Med Chem; 2005 Dec; 48(24):7796-807. PubMed ID: 16302819 [TBL] [Abstract][Full Text] [Related]
8. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies. Genheden S; Ryde U Proteins; 2012 May; 80(5):1326-42. PubMed ID: 22274991 [TBL] [Abstract][Full Text] [Related]
10. Rapid estimation of relative protein-ligand binding affinities using a high-throughput version of MM-PBSA. Brown SP; Muchmore SW J Chem Inf Model; 2007; 47(4):1493-503. PubMed ID: 17518461 [TBL] [Abstract][Full Text] [Related]
11. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Rastelli G; Del Rio A; Degliesposti G; Sgobba M J Comput Chem; 2010 Mar; 31(4):797-810. PubMed ID: 19569205 [TBL] [Abstract][Full Text] [Related]
12. Prediction of the binding free energies of new TIBO-like HIV-1 reverse transcriptase inhibitors using a combination of PROFEC, PB/SA, CMC/MD, and free energy calculations. Eriksson MA; Pitera J; Kollman PA J Med Chem; 1999 Mar; 42(5):868-81. PubMed ID: 10072684 [TBL] [Abstract][Full Text] [Related]
13. Continuum solvation models in the linear interaction energy method. Carlsson J; Andér M; Nervall M; Aqvist J J Phys Chem B; 2006 Jun; 110(24):12034-41. PubMed ID: 16800513 [TBL] [Abstract][Full Text] [Related]
14. Assessing protein kinase selectivity with molecular dynamics and mm-pbsa binding free energy calculations. Muzzioli E; Del Rio A; Rastelli G Chem Biol Drug Des; 2011 Aug; 78(2):252-9. PubMed ID: 21585710 [TBL] [Abstract][Full Text] [Related]
15. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. Stoica I; Sadiq SK; Coveney PV J Am Chem Soc; 2008 Feb; 130(8):2639-48. PubMed ID: 18225901 [TBL] [Abstract][Full Text] [Related]
16. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method. van Lipzig MM; ter Laak AM; Jongejan A; Vermeulen NP; Wamelink M; Geerke D; Meerman JH J Med Chem; 2004 Feb; 47(4):1018-30. PubMed ID: 14761204 [TBL] [Abstract][Full Text] [Related]
17. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy. Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380 [TBL] [Abstract][Full Text] [Related]
18. Alpha7 nicotinic acetylcholine receptor agonists: prediction of their binding affinity through a molecular mechanics Poisson-Boltzmann surface area approach. Grazioso G; Cavalli A; De Amici M; Recanatini M; De Micheli C J Comput Chem; 2008 Nov; 29(15):2593-602. PubMed ID: 18478580 [TBL] [Abstract][Full Text] [Related]
19. Accuracy of the microsolvation-continuum approach in computing the pK(a) and the free energies of formation of phosphate species in aqueous solution. Tang E; Di Tommaso D; de Leeuw NH Phys Chem Chem Phys; 2010 Nov; 12(41):13804-15. PubMed ID: 20862433 [TBL] [Abstract][Full Text] [Related]
20. Crystal molecular dynamics simulations to speed up MM/PB(GB)SA evaluation of binding free energies of di-mannose deoxy analogs with P51G-m4-Cyanovirin-N. Vorontsov II; Miyashita O J Comput Chem; 2011 Apr; 32(6):1043-53. PubMed ID: 20949512 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]