BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 20100078)

  • 1. Posterior weighted reinforcement learning with state uncertainty.
    Larsen T; Leslie DS; Collins EJ; Bogacz R
    Neural Comput; 2010 May; 22(5):1149-79. PubMed ID: 20100078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based reinforcement learning under concurrent schedules of reinforcement in rodents.
    Huh N; Jo S; Kim H; Sul JH; Jung MW
    Learn Mem; 2009 May; 16(5):315-23. PubMed ID: 19403794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept.
    Zsuga J; Biro K; Papp C; Tajti G; Gesztelyi R
    Behav Neurosci; 2016 Feb; 130(1):6-18. PubMed ID: 26795580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterarchical reinforcement-learning model for integration of multiple cortico-striatal loops: fMRI examination in stimulus-action-reward association learning.
    Haruno M; Kawato M
    Neural Netw; 2006 Oct; 19(8):1242-54. PubMed ID: 16987637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online learning of shaping rewards in reinforcement learning.
    Grześ M; Kudenko D
    Neural Netw; 2010 May; 23(4):541-50. PubMed ID: 20116208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of rat behavior by a reinforcement learning algorithm in consideration of appearance probabilities of reinforcement signals.
    Murakoshi K; Noguchi T
    Biosystems; 2005 Apr; 80(1):83-90. PubMed ID: 15740837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of reinforcement learning and decision making in the primate dorsolateral prefrontal cortex.
    Lee D; Seo H
    Ann N Y Acad Sci; 2007 May; 1104():108-22. PubMed ID: 17347332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical model of salience gated working memory, action selection and reinforcement based on basal ganglia and dopamine feedback.
    Ponzi A
    Neural Netw; 2008; 21(2-3):322-30. PubMed ID: 18280108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive properties of differential learning rates for positive and negative outcomes.
    Cazé RD; van der Meer MA
    Biol Cybern; 2013 Dec; 107(6):711-9. PubMed ID: 24085507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spiking neural model for stable reinforcement of synapses based on multiple distal rewards.
    O'Brien MJ; Srinivasa N
    Neural Comput; 2013 Jan; 25(1):123-56. PubMed ID: 23020112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hippocampal replay contributes to within session learning in a temporal difference reinforcement learning model.
    Johnson A; Redish AD
    Neural Netw; 2005 Nov; 18(9):1163-71. PubMed ID: 16198539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Individual prognostic behavioral features in dogs during the choice between probability and value of reinforcement].
    Chilingarian LI; Preobrazhenskaia LA; Merzhanova GKh
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2010; 60(4):438-45. PubMed ID: 20873133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Addiction as a computational process gone awry.
    Redish AD
    Science; 2004 Dec; 306(5703):1944-7. PubMed ID: 15591205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of CAMKII in reinforcement learning: a computational model of glutamate and dopamine signaling pathways.
    Wanjerkhede SM; Bapi RS
    Biol Cybern; 2011 Jun; 104(6):397-424. PubMed ID: 21701878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulators of decision making.
    Doya K
    Nat Neurosci; 2008 Apr; 11(4):410-6. PubMed ID: 18368048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reward-weighted regression with sample reuse for direct policy search in reinforcement learning.
    Hachiya H; Peters J; Sugiyama M
    Neural Comput; 2011 Nov; 23(11):2798-832. PubMed ID: 21851281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An implementation of reinforcement learning based on spike timing dependent plasticity.
    Roberts PD; Santiago RA; Lafferriere G
    Biol Cybern; 2008 Dec; 99(6):517-23. PubMed ID: 18941775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple representations and algorithms for reinforcement learning in the cortico-basal ganglia circuit.
    Ito M; Doya K
    Curr Opin Neurobiol; 2011 Jun; 21(3):368-73. PubMed ID: 21531544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A spiking neural network model of an actor-critic learning agent.
    Potjans W; Morrison A; Diesmann M
    Neural Comput; 2009 Feb; 21(2):301-39. PubMed ID: 19196231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple model-based reinforcement learning explains dopamine neuronal activity.
    Bertin M; Schweighofer N; Doya K
    Neural Netw; 2007 Aug; 20(6):668-75. PubMed ID: 17611074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.