BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 20100107)

  • 1. Floral reflectance, color, and thermoregulation: what really explains geographic variation in thermal acclimation ability of ectotherms?
    Lacey EP; Lovin ME; Richter SJ; Herington DA
    Am Nat; 2010 Mar; 175(3):335-49. PubMed ID: 20100107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fitness effects of floral plasticity and thermoregulation in a thermally changing environment.
    Lacey EP; Lovin ME; Richter SJ
    Am Nat; 2012 Sep; 180(3):342-53. PubMed ID: 22854077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple Plantago species (Plantaginaceae) modify floral reflectance and color in response to thermal change.
    Anderson ER; Lovin ME; Richter SJ; Lacey EP
    Am J Bot; 2013 Dec; 100(12):2485-93. PubMed ID: 24285569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal acclimation of preferred body temperatures improves the opportunity for thermoregulation in newts.
    Hadamová M; Gvoždík L
    Physiol Biochem Zool; 2011; 84(2):166-74. PubMed ID: 21460527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-sensitive alternative oxidase protein content and its relationship to floral reflectance in natural Plantago lanceolata populations.
    Umbach AL; Lacey EP; Richter SJ
    New Phytol; 2009; 181(3):662-71. PubMed ID: 19021863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural selection contributes to geographic patterns of thermal plasticity in
    Marshall MM; Batten LC; Remington DL; Lacey EP
    Ecol Evol; 2019 Mar; 9(5):2945-2963. PubMed ID: 30891228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenotypic plasticity, parental effects, and parental care in plants? I. An examination of spike reflectance in Plantago lanceolata (Plantaginaceae).
    Lacey EP; Herr D
    Am J Bot; 2005 Jun; 92(6):920-30. PubMed ID: 21652475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zebrafish take their cue from temperature but not photoperiod for the seasonal plasticity of thermal performance.
    Condon CH; Chenoweth SF; Wilson RS
    J Exp Biol; 2010 Nov; 213(Pt 21):3705-9. PubMed ID: 20952619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of thermotolerance in seasonal environments: the effects of annual temperature variation and life-history timing in Wyeomyia smithii.
    Ragland GJ; Kingsolver JG
    Evolution; 2008 Jun; 62(6):1345-57. PubMed ID: 18331458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae).
    Lachenicht MW; Clusella-Trullas S; Boardman L; Le Roux C; Terblanche JS
    J Insect Physiol; 2010 Jul; 56(7):822-30. PubMed ID: 20197070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do mitochondrial properties explain intraspecific variation in thermal tolerance?
    Fangue NA; Richards JG; Schulte PM
    J Exp Biol; 2009 Feb; 212(Pt 4):514-22. PubMed ID: 19181899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calling behaviour under climate change: geographical and seasonal variation of calling temperatures in ectotherms.
    Llusia D; Márquez R; Beltrán JF; Benítez M; do Amaral JP
    Glob Chang Biol; 2013 Sep; 19(9):2655-74. PubMed ID: 23712567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beneficial acclimation: sex specific thermal acclimation of metabolic capacity in the striped marsh frog (Limnodynastes peronii).
    Rogers KD; Thompson MB; Seebacher F
    J Exp Biol; 2007 Aug; 210(Pt 16):2932-8. PubMed ID: 17690242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Countergradient variation in temperature preference in populations of killifish Fundulus heteroclitus.
    Fangue NA; Podrabsky JE; Crawshaw LI; Schulte PM
    Physiol Biochem Zool; 2009; 82(6):776-86. PubMed ID: 19732025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two reproductive traits show contrasting genetic architectures in Plantago lanceolata.
    Marshall MM; Remington DL; Lacey EP
    Mol Ecol; 2020 Jan; 29(2):272-291. PubMed ID: 31793079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny.
    Stillman JH; Somero GN
    Physiol Biochem Zool; 2000; 73(2):200-8. PubMed ID: 10801398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity and environment-specific covariances: an investigation of floral-vegetative and within flower correlations.
    Brock MT; Weinig C
    Evolution; 2007 Dec; 61(12):2913-24. PubMed ID: 17941839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in the thermal parameters of Odontophrynus occidentalis in the Monte desert, Argentina: response to the environmental constraints.
    Sanabria EA; Quiroga LB; Martino AL
    J Exp Zool A Ecol Genet Physiol; 2012 Mar; 317(3):185-93. PubMed ID: 22311743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal tolerance in widespread and tropical Drosophila species: does phenotypic plasticity increase with latitude?
    Overgaard J; Kristensen TN; Mitchell KA; Hoffmann AA
    Am Nat; 2011 Oct; 178 Suppl 1():S80-96. PubMed ID: 21956094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.