BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2010040)

  • 1. Differential susceptibilities of spinal cord neurons to retinoic acid-induced survival and differentiation.
    Wuarin L; Sidell N
    Dev Biol; 1991 Apr; 144(2):429-35. PubMed ID: 2010040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinoids increase perinatal spinal cord neuronal survival and astroglial differentiation.
    Wuarin L; Sidell N; de Vellis J
    Int J Dev Neurosci; 1990; 8(3):317-26. PubMed ID: 2201170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholinergic differentiation of clonal rat pheochromocytoma cells (PC12) induced by retinoic acid: increase of choline acetyltransferase activity and decrease of tyrosine hydroxylase activity.
    Matsuoka I; Mizuno N; Kurihara K
    Brain Res; 1989 Nov; 502(1):53-60. PubMed ID: 2573410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creatine treatment promotes differentiation of GABA-ergic neuronal precursors in cultured fetal rat spinal cord.
    Ducray AD; Schläppi JA; Qualls R; Andres RH; Seiler RW; Schlattner U; Wallimann T; Widmer HR
    J Neurosci Res; 2007 Jul; 85(9):1863-75. PubMed ID: 17526013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholinergic enzyme activity in neurons of the developing anuran spinal cord.
    Farel PB; McIlwain DL
    Brain Res; 1983 Jun; 284(2-3):275-82. PubMed ID: 6603253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TCP enhances the survival of human fetal spinal cord cells in culture.
    Levallois C; Calvet MC; Kamenka JM; Petite D; Privat A
    Brain Res; 1992 Feb; 573(2):327-30. PubMed ID: 1504769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinergic and GABAergic neurons in the rat medial septum express muscarinic acetylcholine receptors.
    Van der Zee EA; Luiten PG
    Brain Res; 1994 Aug; 652(2):263-72. PubMed ID: 7953739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arachidonic acid increases choline acetyltransferase activity in spinal cord neurons through a protein kinase C-mediated mechanism.
    Chalimoniuk M; King-Pospisil K; Pedersen WA; Malecki A; Wylegala E; Mattson MP; Hennig B; Toborek M
    J Neurochem; 2004 Aug; 90(3):629-36. PubMed ID: 15255940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Acetylcholinesterase activity, choline acetyltransferase and GABA immunoreactivity in the ventral horn of the spinal cord of rats during chromatolysis].
    Manolov S; Davidoff M
    Rev Neurol (Paris); 1989; 145(1):55-9. PubMed ID: 2646682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinergic differentiation triggered by blocking cell proliferation and treatment with all-trans-retinoic acid.
    Malik MA; Greenwood CE; Blusztajn JK; Berse B
    Brain Res; 2000 Aug; 874(2):178-85. PubMed ID: 10960602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinoic acid induces cholinergic differentiation of cultured newborn rat sympathetic neurons.
    Berrard S; Faucon Biguet N; Houhou L; Lamouroux A; Mallet J
    J Neurosci Res; 1993 Jul; 35(4):382-9. PubMed ID: 8103115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of interferon-gamma and its interaction with retinoic acid on human neuroblastoma differentiation.
    Wuarin L; Verity MA; Sidell N
    Int J Cancer; 1991 Apr; 48(1):136-41. PubMed ID: 1673449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cholinergic differentiation of cultured sympathetic neurons induced by retinoic acid. Induction of choline acetyltransferase-mRNA and suppression of tyrosine hydroxylase-mRNA levels.
    Kobayashi M; Matsuoka I; Kurihara K
    FEBS Lett; 1994 Jan; 337(3):259-64. PubMed ID: 7904945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations in acetylcholinesterase and choline acetyltransferase activities and neuropeptide levels in the ventral spinal cord of the Wobbler mouse during inherited motoneuron disease.
    Yung KK; Tang F; Vacca-Galloway LL
    Brain Res; 1994 Feb; 638(1-2):337-42. PubMed ID: 7515324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential expression and regulation of the high-affinity choline transporter CHT1 and choline acetyltransferase in neurons of superior cervical ganglia.
    Lecomte MJ; De Gois S; Guerci A; Ravassard P; Faucon Biguet N; Mallet J; Berrard S
    Mol Cell Neurosci; 2005 Feb; 28(2):303-13. PubMed ID: 15691711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of basic fibroblast growth factor on survival and choline acetyltransferase development of spinal cord neurons.
    Grothe C; Wewetzer K; Lagrange A; Unsicker K
    Brain Res Dev Brain Res; 1991 Oct; 62(2):257-61. PubMed ID: 1769104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organotypic slice cultures of the rat striatum--I. A histochemical and immunocytochemical study of acetylcholinesterase, choline acetyltransferase, glutamate decarboxylase and GABA.
    Ostergaard K
    Neuroscience; 1993 Apr; 53(3):679-93. PubMed ID: 8487950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation patterns of four groups of cholinergic neurons in rat cervical spinal cord: a combined tritiated thymidine autoradiographic and choline acetyltransferase immunocytochemical study.
    Phelps PE; Barber RP; Vaughn JE
    J Comp Neurol; 1988 Jul; 273(4):459-72. PubMed ID: 3209733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological and biochemical differences expressed in separate dissociated cell cultures of dorsal and ventral halves of the mouse spinal cord.
    Guthrie PB; Brenneman DE; Neale EA
    Brain Res; 1987 Sep; 420(2):313-23. PubMed ID: 3676764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of the distribution of central cholinergic neurons as demonstrated by acetylcholinesterase pharmacohistochemistry and choline acetyltransferase immunohistochemistry.
    Satoh K; Armstrong DM; Fibiger HC
    Brain Res Bull; 1983 Dec; 11(6):693-720. PubMed ID: 6362780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.