These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 2010040)

  • 21. Enhanced potency of 9-cis versus all-trans-retinoic acid to induce the differentiation of human neuroblastoma cells.
    Han G; Chang B; Connor MJ; Sidell N
    Differentiation; 1995 Jul; 59(1):61-9. PubMed ID: 7589896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increase of choline acetyltransferase by colchicine in primary cell cultures of spinal cord.
    Ishida I; Deguchi T
    J Neurochem; 1984 Jul; 43(1):42-8. PubMed ID: 6726256
    [TBL] [Abstract][Full Text] [Related]  

  • 23. K-252a and staurosporine promote choline acetyltransferase activity in rat spinal cord cultures.
    Glicksman MA; Prantner JE; Meyer SL; Forbes ME; Dasgupta M; Lewis ME; Neff N
    J Neurochem; 1993 Jul; 61(1):210-21. PubMed ID: 8515268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Retinoic acid induces cholinergic differentiation of NTera 2 human embryonal carcinoma cells.
    Zeller M; Strauss WL
    Int J Dev Neurosci; 1995 Aug; 13(5):437-45. PubMed ID: 7484214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stimulation of choline acetyltransferase activity by retinoic acid and sodium butyrate in a cultured human neuroblastoma.
    Casper D; Davies P
    Brain Res; 1989 Jan; 478(1):74-84. PubMed ID: 2924123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential effects of acidic and basic fibroblast growth factors on spinal cord cholinergic, GABAergic, and glutamatergic neurons.
    Sweetnam PM; Sanon HR; White LA; Brass BJ; Jaye M; Whittemore SR
    J Neurochem; 1991 Jul; 57(1):237-49. PubMed ID: 1711096
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The identification of proteoglycan, collagen and neuron in precursor cells from human fetal spinal cord.
    Yoo CJ; Yoo YM; Kim YJ
    Neurosci Lett; 2009 Jul; 457(3):151-4. PubMed ID: 19429183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reciprocal regulation of choline acetyltransferase and choline kinase in sympathetic neurons during cholinergic differentiation.
    Bussière M; Campenot RB; Ure DR; Vance JE; Vance DE
    Biochim Biophys Acta; 1995 Nov; 1259(2):148-54. PubMed ID: 7488634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Colocalization of acetylcholinesterase, butyrylcholinesterase and choline acetyltransferase in rat spinal cord.
    Mis K
    Hum Exp Toxicol; 2005 Oct; 24(10):543-5. PubMed ID: 16270756
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzymatic activities during differentiation of the human neuroblastoma cells, LA-N-1 and LA-N-2.
    Singh IN; Sorrentino G; McCartney DG; Massarelli R; Kanfer JN
    J Neurosci Res; 1990 Apr; 25(4):476-85. PubMed ID: 2352289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased activity of choline acetyltransferase and acetylcholinesterase in developing cultures of chick spinal cord: a correlation with morphological development.
    Kim SU; Oh TH; Johnson DD
    Neurobiology; 1975 May; 5(2):119-27. PubMed ID: 1134618
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell death of motoneurons in the chick embryo spinal cord. III. The differentiation of motoneurons prior to their induced degeneration following limb-bud removal.
    Oppenheim RW; Chu-Wang IW; Maderdrut JL
    J Comp Neurol; 1978 Jan; 177(1):87-111. PubMed ID: 618440
    [No Abstract]   [Full Text] [Related]  

  • 33. Cholinergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat.
    Kosaka T; Tauchi M; Dahl JL
    Exp Brain Res; 1988; 70(3):605-17. PubMed ID: 3384059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Differential effects of insulin on choline acetyltransferase and glutamic acid decarboxylase activities in neuron-rich striatal cultures.
    Brass BJ; Nonner D; Barrett JN
    J Neurochem; 1992 Aug; 59(2):415-24. PubMed ID: 1629717
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of cholinergic pedunculopontine neurons in vitro: comparison with cholinergic septal cells and response to nerve growth factor, ciliary neuronotrophic factor, and retinoic acid.
    Knusel B; Hefti F
    J Neurosci Res; 1988; 21(2-4):365-75. PubMed ID: 3216429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retinoic acid responsive gene product, midkine, has neurotrophic functions for mouse spinal cord and dorsal root ganglion neurons in culture.
    Michikawa M; Kikuchi S; Muramatsu H; Muramatsu T; Kim SU
    J Neurosci Res; 1993 Aug; 35(5):530-9. PubMed ID: 8377224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. New organotypic model to culture the entire fetal rat spinal cord.
    Mariotti C; Askanas V; Engel WK
    J Neurosci Methods; 1993 Jun; 48(1-2):157-67. PubMed ID: 8377519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Choline acetyltransferase and acetylcholinesterase in canine spinal ganglia: increase of choline acetyltransferase activity following sciatic nerve lesion.
    Malatová Z; Longauer F; Marsala J
    J Hirnforsch; 1985; 26(6):683-8. PubMed ID: 4093596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unique developmental patterns of GABAergic neurons in rat spinal cord.
    Tran TS; Alijani A; Phelps PE
    J Comp Neurol; 2003 Feb; 456(2):112-26. PubMed ID: 12509869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. All-trans- and 9-cis-retinoic acid enhance the cholinergic properties of a murine septal cell line: evidence that the effects are mediated by activation of retinoic acid receptor-alpha.
    Pedersen WA; Berse B; Schüler U; Wainer BH; Blusztajn JK
    J Neurochem; 1995 Jul; 65(1):50-8. PubMed ID: 7790895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.