These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 20100476)
1. Embryonic stem cells promote motor recovery and affect inflammatory cell infiltration in spinal cord injured mice. Bottai D; Cigognini D; Madaschi L; Adami R; Nicora E; Menarini M; Di Giulio AM; Gorio A Exp Neurol; 2010 Jun; 223(2):452-63. PubMed ID: 20100476 [TBL] [Abstract][Full Text] [Related]
2. [Experimental study on transplantation of embryonic stem cells in treating spinal cord injury]. Yang J; Li C; Zhai R Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 May; 21(5):487-91. PubMed ID: 17578288 [TBL] [Abstract][Full Text] [Related]
4. Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors. Yoo S; Wrathall JR Dev Neurobiol; 2007 Jun; 67(7):860-74. PubMed ID: 17506499 [TBL] [Abstract][Full Text] [Related]
5. Transplantation of embryonic neural stem/precursor cells overexpressing BM88/Cend1 enhances the generation of neuronal cells in the injured mouse cortex. Makri G; Lavdas AA; Katsimpardi L; Charneau P; Thomaidou D; Matsas R Stem Cells; 2010 Jan; 28(1):127-39. PubMed ID: 19911428 [TBL] [Abstract][Full Text] [Related]
6. Multipotent embryonic spinal cord stem cells expanded by endothelial factors and Shh/RA promote functional recovery after spinal cord injury. Lowry N; Goderie SK; Adamo M; Lederman P; Charniga C; Gill J; Silver J; Temple S Exp Neurol; 2008 Feb; 209(2):510-22. PubMed ID: 18029281 [TBL] [Abstract][Full Text] [Related]
7. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451 [TBL] [Abstract][Full Text] [Related]
8. Embryonic radial glia bridge spinal cord lesions and promote functional recovery following spinal cord injury. Hasegawa K; Chang YW; Li H; Berlin Y; Ikeda O; Kane-Goldsmith N; Grumet M Exp Neurol; 2005 Jun; 193(2):394-410. PubMed ID: 15869942 [TBL] [Abstract][Full Text] [Related]
9. Enhanced regeneration in spinal cord injury by concomitant treatment with granulocyte colony-stimulating factor and neuronal stem cells. Pan HC; Cheng FC; Lai SZ; Yang DY; Wang YC; Lee MS J Clin Neurosci; 2008 Jun; 15(6):656-64. PubMed ID: 18406145 [TBL] [Abstract][Full Text] [Related]
10. Lentiviral vector-mediated transduction of neural progenitor cells before implantation into injured spinal cord and brain to detect their migration, deliver neurotrophic factors and repair tissue. Blits B; Kitay BM; Farahvar A; Caperton CV; Dietrich WD; Bunge MB Restor Neurol Neurosci; 2005; 23(5-6):313-24. PubMed ID: 16477093 [TBL] [Abstract][Full Text] [Related]
11. Pain with no gain: allodynia following neural stem cell transplantation in spinal cord injury. Macias MY; Syring MB; Pizzi MA; Crowe MJ; Alexanian AR; Kurpad SN Exp Neurol; 2006 Oct; 201(2):335-48. PubMed ID: 16839548 [TBL] [Abstract][Full Text] [Related]
12. Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord. Yasuda A; Tsuji O; Shibata S; Nori S; Takano M; Kobayashi Y; Takahashi Y; Fujiyoshi K; Hara CM; Miyawaki A; Okano HJ; Toyama Y; Nakamura M; Okano H Stem Cells; 2011 Dec; 29(12):1983-94. PubMed ID: 22028197 [TBL] [Abstract][Full Text] [Related]
13. Embryonic stem cell-derived L1 overexpressing neural aggregates enhance recovery in Parkinsonian mice. Cui YF; Hargus G; Xu JC; Schmid JS; Shen YQ; Glatzel M; Schachner M; Bernreuther C Brain; 2010 Jan; 133(Pt 1):189-204. PubMed ID: 19995872 [TBL] [Abstract][Full Text] [Related]
14. Myeloperoxidase exacerbates secondary injury by generating highly reactive oxygen species and mediating neutrophil recruitment in experimental spinal cord injury. Kubota K; Saiwai H; Kumamaru H; Maeda T; Ohkawa Y; Aratani Y; Nagano T; Iwamoto Y; Okada S Spine (Phila Pa 1976); 2012 Jul; 37(16):1363-9. PubMed ID: 22322369 [TBL] [Abstract][Full Text] [Related]
15. Embryonic and adult stem cells promote raphespinal axon outgrowth and improve functional outcome following spinal hemisection in mice. Boido M; Rupa R; Garbossa D; Fontanella M; Ducati A; Vercelli A Eur J Neurosci; 2009 Sep; 30(5):833-46. PubMed ID: 19712091 [TBL] [Abstract][Full Text] [Related]
16. Overexpression of Bcl-XL in human neural stem cells promotes graft survival and functional recovery following transplantation in spinal cord injury. Lee SI; Kim BG; Hwang DH; Kim HM; Kim SU J Neurosci Res; 2009 Nov; 87(14):3186-97. PubMed ID: 19530162 [TBL] [Abstract][Full Text] [Related]
17. Chronic alterations in the cellular composition of spinal cord white matter following contusion injury. Rosenberg LJ; Zai LJ; Wrathall JR Glia; 2005 Jan; 49(1):107-20. PubMed ID: 15390101 [TBL] [Abstract][Full Text] [Related]
18. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats. Liang P; Jin LH; Liang T; Liu EZ; Zhao SG Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177 [TBL] [Abstract][Full Text] [Related]