These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 20100479)

  • 41. Characterization of hydrophobic interaction and antioxidant properties of the phenothiazine nucleus in mitochondrial and model membranes.
    Borges MB; Dos Santos CG; Yokomizo CH; Sood R; Vitovic P; Kinnunen PK; Rodrigues T; Nantes IL
    Free Radic Res; 2010 Sep; 44(9):1054-63. PubMed ID: 20815768
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Pore formation in a lipid bilayer under a tension ramp: modeling the distribution of rupture tensions.
    Boucher PA; Joós B; Zuckermann MJ; Fournier L
    Biophys J; 2007 Jun; 92(12):4344-55. PubMed ID: 17400693
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protocol for Investigating the Interactions Between Intrinsically Disordered Proteins and Membranes by Neutron Reflectometry.
    Luchini A; Arleth L
    Methods Mol Biol; 2020; 2141():569-584. PubMed ID: 32696378
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sensing membrane thickness: Lessons learned from cold stress.
    Saita E; Albanesi D; de Mendoza D
    Biochim Biophys Acta; 2016 Aug; 1861(8 Pt B):837-846. PubMed ID: 26776056
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations.
    Rebaud S; Maniti O; Girard-Egrot AP
    Biochimie; 2014 Dec; 107 Pt A():135-42. PubMed ID: 24998327
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of brain gangliosides on the formation and properties of supported lipid bilayers.
    Jordan LR; Blauch ME; Baxter AM; Cawley JL; Wittenberg NJ
    Colloids Surf B Biointerfaces; 2019 Nov; 183():110442. PubMed ID: 31472390
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The bound states of amphipathic drugs in lipid bilayers: study of curcumin.
    Sun Y; Lee CC; Hung WC; Chen FY; Lee MT; Huang HW
    Biophys J; 2008 Sep; 95(5):2318-24. PubMed ID: 18515370
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Fluid-Mosaic Model of Membrane Structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years.
    Nicolson GL
    Biochim Biophys Acta; 2014 Jun; 1838(6):1451-66. PubMed ID: 24189436
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of rigid inclusions on the bending elasticity of a lipid membrane.
    Fosnaric M; Iglic A; May S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051503. PubMed ID: 17279913
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Beyond the hydrophobic effect: Critical function of water at biological phase boundaries--A hypothesis.
    Damodaran S
    Adv Colloid Interface Sci; 2015 Jul; 221():22-33. PubMed ID: 25888225
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular Shape Solution for Mesoscopic Remodeling of Cellular Membranes.
    Bashkirov PV; Kuzmin PI; Vera Lillo J; Frolov VA
    Annu Rev Biophys; 2022 May; 51():473-497. PubMed ID: 35239417
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Line tension of multicomponent bilayer membranes.
    Dehghan A; Pastor KA; Shi AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022713. PubMed ID: 25768537
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The mechanisms of lipid-protein rearrangements during viral infection.
    Chizmadzhev YA
    Bioelectrochemistry; 2004 Jun; 63(1-2):129-36. PubMed ID: 15110263
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B; Arab-Tehrany E; Kheirolomoom A; Geny D; Linder M
    Biochimie; 2013 Nov; 95(11):2018-33. PubMed ID: 23871914
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Insight into the mechanism of antimicrobial poly(phenylene ethynylene) polyelectrolytes: interactions with phosphatidylglycerol lipid membranes.
    Ding L; Chi EY; Chemburu S; Ji E; Schanze KS; Lopez GP; Whitten DG
    Langmuir; 2009 Dec; 25(24):13742-51. PubMed ID: 20560549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Systematic comparison of unilamellar vesicles reveals that archaeal core lipid membranes are more permeable than bacterial membranes.
    Łapińska U; Glover G; Kahveci Z; Irwin NAT; Milner DS; Tourte M; Albers SV; Santoro AE; Richards TA; Pagliara S
    PLoS Biol; 2023 Apr; 21(4):e3002048. PubMed ID: 37014915
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Model answers to lipid membrane questions.
    Mouritsen OG
    Cold Spring Harb Perspect Biol; 2011 Sep; 3(9):a004622. PubMed ID: 21610116
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fractal avalanche ruptures in biological membranes.
    Gözen I; Dommersnes P; Czolkos I; Jesorka A; Lobovkina T; Orwar O
    Nat Mater; 2010 Nov; 9(11):908-12. PubMed ID: 20935656
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermal fluctuation and elasticity of lipid vesicles interacting with pore-forming peptides.
    Lee JH; Choi SM; Doe C; Faraone A; Pincus PA; Kline SR
    Phys Rev Lett; 2010 Jul; 105(3):038101. PubMed ID: 20867811
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Membrane insertion and lateral mobility of synthetic amphiphilic signal peptides in lipid model membranes.
    Tamm LK
    Biochim Biophys Acta; 1991 Jul; 1071(2):123-48. PubMed ID: 1854792
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.