These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
308 related articles for article (PubMed ID: 20100552)
1. Characterisation and functionality of inhalation anhydrous lactose. Pitchayajittipong C; Price R; Shur J; Kaerger JS; Edge S Int J Pharm; 2010 May; 390(2):134-41. PubMed ID: 20100552 [TBL] [Abstract][Full Text] [Related]
2. Dry powder inhalers: mechanistic evaluation of lactose formulations containing salbutamol sulphate. Kaialy W; Ticehurst M; Nokhodchi A Int J Pharm; 2012 Feb; 423(2):184-94. PubMed ID: 22197772 [TBL] [Abstract][Full Text] [Related]
3. Influence of primary crystallisation conditions on the mechanical and interfacial properties of micronised budesonide for dry powder inhalation. Kubavat HA; Shur J; Ruecroft G; Hipkiss D; Price R Int J Pharm; 2012 Jul; 430(1-2):26-33. PubMed ID: 22449413 [TBL] [Abstract][Full Text] [Related]
4. Investigations on the Mechanism of Magnesium Stearate to Modify Aerosol Performance in Dry Powder Inhaled Formulations. Jetzer MW; Schneider M; Morrical BD; Imanidis G J Pharm Sci; 2018 Apr; 107(4):984-998. PubMed ID: 29247741 [TBL] [Abstract][Full Text] [Related]
5. Influence of crystal form of ipratropium bromide on micronisation and aerosolisation behaviour in dry powder inhaler formulations. Shur J; Kubavat HA; Ruecroft G; Hipkiss D; Price R J Pharm Pharmacol; 2012 Sep; 64(9):1326-36. PubMed ID: 22881444 [TBL] [Abstract][Full Text] [Related]
6. Development of budesonide nanocluster dry powder aerosols: preformulation. El-Gendy N; Selvam P; Soni P; Berkland C J Pharm Sci; 2012 Sep; 101(9):3434-44. PubMed ID: 22623018 [TBL] [Abstract][Full Text] [Related]
7. Low powder mass filling of dry powder inhalation formulations. Eskandar F; Lejeune M; Edge S Drug Dev Ind Pharm; 2011 Jan; 37(1):24-32. PubMed ID: 20738180 [TBL] [Abstract][Full Text] [Related]
8. The role of fines in the modification of the fluidization and dispersion mechanism within dry powder inhaler formulations. Shur J; Harris H; Jones MD; Kaerger JS; Price R Pharm Res; 2008 Jul; 25(7):1631-40. PubMed ID: 18239861 [TBL] [Abstract][Full Text] [Related]
9. Novel Budesonide Particles for Dry Powder Inhalation Prepared Using a Microfluidic Reactor Coupled With Ultrasonic Spray Freeze Drying. Saboti D; Maver U; Chan HK; Planinšek O J Pharm Sci; 2017 Jul; 106(7):1881-1888. PubMed ID: 28285981 [TBL] [Abstract][Full Text] [Related]
10. From single excipients to dual excipient platforms in dry powder inhaler products. Shur J; Price R; Lewis D; Young PM; Woollam G; Singh D; Edge S Int J Pharm; 2016 Dec; 514(2):374-383. PubMed ID: 27262269 [TBL] [Abstract][Full Text] [Related]
11. Defining the critical material attributes of lactose monohydrate in carrier based dry powder inhaler formulations using artificial neural networks. Kinnunen H; Hebbink G; Peters H; Shur J; Price R AAPS PharmSciTech; 2014 Aug; 15(4):1009-20. PubMed ID: 24831088 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of SCF-engineered particle-based lactose blends in passive dry powder inhalers. Schiavone H; Palakodaty S; Clark A; York P; Tzannis ST Int J Pharm; 2004 Aug; 281(1-2):55-66. PubMed ID: 15288343 [TBL] [Abstract][Full Text] [Related]
13. The surface characterisation and comparison of two potential sub-micron, sugar bulking excipients for use in low-dose, suspension formulations in metered dose inhalers. James J; Crean B; Davies M; Toon R; Jinks P; Roberts CJ Int J Pharm; 2008 Sep; 361(1-2):209-21. PubMed ID: 18577435 [TBL] [Abstract][Full Text] [Related]
14. Critical attributes of fine excipient materials in carrier-based dry powder inhalation formulations: The particle shape and surface properties. Elsayed MMA; Alfagih IM; Brockbank K; Aodah AH; Ali R; Almansour K; Shalash AO Int J Pharm; 2024 Apr; 655():123966. PubMed ID: 38452834 [TBL] [Abstract][Full Text] [Related]
15. Synergistic effect of magnesium stearate and fine lactose in improving aerosolization performance of fluticasone propionate in dry powder formulation. He X; Li J; Wen X; Ma S; An Y; Zhang X; Guan J; Mao S Int J Pharm; 2024 Oct; 664():124609. PubMed ID: 39163928 [TBL] [Abstract][Full Text] [Related]
16. Humidity-induced changes of the aerodynamic properties of dry powder aerosol formulations containing different carriers. Zeng XM; MacRitchie HB; Marriott C; Martin GP Int J Pharm; 2007 Mar; 333(1-2):45-55. PubMed ID: 17064863 [TBL] [Abstract][Full Text] [Related]
17. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler. Singh DJ; Jain RR; Soni PS; Abdul S; Darshana H; Gaikwad RV; Menon MD J Aerosol Med Pulm Drug Deliv; 2015 Aug; 28(4):254-67. PubMed ID: 25517187 [TBL] [Abstract][Full Text] [Related]
18. Excipient-free nanoporous microparticles of budesonide for pulmonary delivery. Nolan LM; Tajber L; McDonald BF; Barham AS; Corrigan OI; Healy AM Eur J Pharm Sci; 2009 Jul; 37(5):593-602. PubMed ID: 19463948 [TBL] [Abstract][Full Text] [Related]
19. Effect of milling and sieving on functionality of dry powder inhalation products. Steckel H; Markefka P; teWierik H; Kammelar R Int J Pharm; 2006 Feb; 309(1-2):51-9. PubMed ID: 16377105 [TBL] [Abstract][Full Text] [Related]
20. Capabilities and limitations of using powder rheology and permeability to predict dry powder inhaler performance. Cordts E; Steckel H Eur J Pharm Biopharm; 2012 Oct; 82(2):417-23. PubMed ID: 22902789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]