These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20100575)

  • 1. Ribosomal synthesis and in situ isolation of peptide molecules in a cell-free translation system.
    Lee KH; Kwon YC; Yoo SJ; Kim DM
    Protein Expr Purif; 2010 May; 71(1):16-20. PubMed ID: 20100575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of antigenic markers on a GFP-Ckappa fusion scaffold with high sensitivity by eukaryotic ribosome display.
    Yang YM; Barankiewicz TJ; He M; Taussig MJ; Chen SS
    Biochem Biophys Res Commun; 2007 Jul; 359(2):251-7. PubMed ID: 17537405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of signal sequences as an in situ removable sequence element to stimulate protein synthesis in cell-free extracts.
    Ahn JH; Hwang MY; Lee KH; Choi CY; Kim DM
    Nucleic Acids Res; 2007; 35(4):e21. PubMed ID: 17185295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-free synthesis and in situ isolation of recombinant proteins.
    Kim TW; Oh IS; Ahn JH; Choi CY; Kim DM
    Protein Expr Purif; 2006 Feb; 45(2):249-54. PubMed ID: 16256369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid discovery of protein interactions by cell-free protein technologies.
    He M; Taussig MJ
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):962-5. PubMed ID: 17956255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosomal synthesis of nonstandard peptides.
    Kang TJ; Suga H
    Biochem Cell Biol; 2008 Apr; 86(2):92-9. PubMed ID: 18443622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly efficient ribosome display selection by use of purified components for in vitro translation.
    Villemagne D; Jackson R; Douthwaite JA
    J Immunol Methods; 2006 Jun; 313(1-2):140-8. PubMed ID: 16730021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Ribosomal synthesis of polyleucine on a polyuridylic acid matrix in a cell-free translation system].
    Rutkevich NM; Gavrilova LP
    Dokl Akad Nauk SSSR; 1980; 254(3):766-8. PubMed ID: 7002522
    [No Abstract]   [Full Text] [Related]  

  • 10. Cell-free synthesis of polypeptides lacking an amino-terminal methionine by using a dicistroviral intergenic internal ribosome entry site.
    Shibuya N; Nishiyama T; Nakashima N
    J Biochem; 2004 Nov; 136(5):601-6. PubMed ID: 15632299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing the efficiency of cell-free protein synthesis through the polymerase-chain-reaction-based addition of a translation enhancer sequence and the in situ removal of the extra amino acid residues.
    Son JM; Ahn JH; Hwang MY; Park CG; Choi CY; Kim DM
    Anal Biochem; 2006 Apr; 351(2):187-92. PubMed ID: 16430851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbeads display of proteins using emulsion PCR and cell-free protein synthesis.
    Gan R; Yamanaka Y; Kojima T; Nakano H
    Biotechnol Prog; 2008; 24(5):1107-14. PubMed ID: 19194920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid translation system: a novel cell-free way from gene to protein.
    Hoffmann M; Nemetz C; Madin K; Buchberger B
    Biotechnol Annu Rev; 2004; 10():1-30. PubMed ID: 15504701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of superparamagnetic beads for the isolation of a peptide with specificity to cymbidium mosaic virus.
    Ooi DJ; Dzulkurnain A; Othman RY; Lim SH; Harikrishna JA
    J Virol Methods; 2006 Sep; 136(1-2):160-5. PubMed ID: 16781785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosomal protein S1 is not essential for the trans-translation machinery.
    Qi H; Shimizu Y; Ueda T
    J Mol Biol; 2007 May; 368(3):845-52. PubMed ID: 17376482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition by suramin of protein synthesis in vitro. Ribosomes as the target of the drug.
    Brigotti M; Alfieri RR; Petronini PG; Carnicelli D
    Biochimie; 2006 May; 88(5):497-503. PubMed ID: 16386828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient generation of insect-based cell-free translation extracts active in glycosylation and signal sequence processing.
    Katzen F; Kudlicki W
    J Biotechnol; 2006 Sep; 125(2):194-7. PubMed ID: 16621082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of carrier tRNAs and selection of four-base codons for efficient incorporation of various nonnatural amino acids into proteins in Spodoptera frugiperda 21 (Sf21) insect cell-free translation system.
    Taki M; Tokuda Y; Ohtsuki T; Sisido M
    J Biosci Bioeng; 2006 Dec; 102(6):511-7. PubMed ID: 17270715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and computational analysis of translation products in apomyoglobin expression.
    Jungbauer LM; Bakke CK; Cavagnero S
    J Mol Biol; 2006 Apr; 357(4):1121-43. PubMed ID: 16483602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient and faithful in vitro translation of natural and synthetic mRNA with human ribosomes.
    Ferreras AC; Bandeira E; Cayama E; Zambrano R; Avila H; YĆ©pez A; Triana JL; Triana-Alonso FJ
    Int J Mol Med; 2004 Apr; 13(4):527-36. PubMed ID: 15010852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.