These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 20100901)

  • 21. Spatial updating in area LIP is independent of saccade direction.
    Heiser LM; Colby CL
    J Neurophysiol; 2006 May; 95(5):2751-67. PubMed ID: 16291805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The neural basis of perceptual hypothesis generation and testing.
    Weidner R; Shah NJ; Fink GR
    J Cogn Neurosci; 2006 Feb; 18(2):258-66. PubMed ID: 16494685
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative analysis of attention and detection signals during visual search.
    Shulman GL; McAvoy MP; Cowan MC; Astafiev SV; Tansy AP; d'Avossa G; Corbetta M
    J Neurophysiol; 2003 Nov; 90(5):3384-97. PubMed ID: 12917383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-task interference during initial learning of a new motor task results from competition for the same brain areas.
    Rémy F; Wenderoth N; Lipkens K; Swinnen SP
    Neuropsychologia; 2010 Jul; 48(9):2517-27. PubMed ID: 20434467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional specialization and convergence in the occipito-temporal cortex supporting haptic and visual identification of human faces and body parts: an fMRI study.
    Kitada R; Johnsrude IS; Kochiyama T; Lederman SJ
    J Cogn Neurosci; 2009 Oct; 21(10):2027-45. PubMed ID: 18823255
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimulus-response incompatibility activates cortex proximate to three eye fields.
    Merriam EP; Colby CL; Thulborn KR; Luna B; Olson CR; Sweeney JA
    Neuroimage; 2001 May; 13(5):794-800. PubMed ID: 11304076
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trial history effects in the ventral attentional network.
    Scalf PE; Ahn J; Beck DM; Lleras A
    J Cogn Neurosci; 2014 Dec; 26(12):2789-97. PubMed ID: 24960047
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control.
    Thiel CM; Fink GR
    Neuroscience; 2008 Mar; 152(2):381-90. PubMed ID: 18272290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional brain organization for visual search in ASD.
    Keehn B; Brenner L; Palmer E; Lincoln AJ; Müller RA
    J Int Neuropsychol Soc; 2008 Nov; 14(6):990-1003. PubMed ID: 18954479
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear response of the anterior cingulate and prefrontal cortex in schizophrenia as a function of variable attentional control.
    Blasi G; Taurisano P; Papazacharias A; Caforio G; Romano R; Lobianco L; Fazio L; Di Giorgio A; Latorre V; Sambataro F; Popolizio T; Nardini M; Mattay VS; Weinberger DR; Bertolino A
    Cereb Cortex; 2010 Apr; 20(4):837-45. PubMed ID: 19633177
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated contextual representation for objects' identities and their locations.
    Gronau N; Neta M; Bar M
    J Cogn Neurosci; 2008 Mar; 20(3):371-88. PubMed ID: 18004950
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frontal-parietal synchrony in elderly EEG for visual search.
    Phillips S; Takeda Y
    Int J Psychophysiol; 2010 Jan; 75(1):39-43. PubMed ID: 19903501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temporal dynamics of parietal cortex involvement in visual search.
    Rosenthal CR; Walsh V; Mannan SK; Anderson EJ; Hawken MB; Kennard C
    Neuropsychologia; 2006; 44(5):731-43. PubMed ID: 16150470
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parietal and frontal object areas underlie perception of object orientation in depth.
    Niimi R; Saneyoshi A; Abe R; Kaminaga T; Yokosawa K
    Neurosci Lett; 2011 May; 496(1):35-9. PubMed ID: 21470573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control networks and hemispheric asymmetries in parietal cortex during attentional orienting in different spatial reference frames.
    Wilson KD; Woldorff MG; Mangun GR
    Neuroimage; 2005 Apr; 25(3):668-83. PubMed ID: 15808968
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conversation effects on neural mechanisms underlying reaction time to visual events while viewing a driving scene: fMRI analysis and asynchrony model.
    Hsieh L; Young RA; Bowyer SM; Moran JE; Genik RJ; Green CC; Chiang YR; Yu YJ; Liao CC; Seaman S
    Brain Res; 2009 Jan; 1251():162-75. PubMed ID: 18952070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A functional MRI study of preparatory signals for spatial location and objects.
    Corbetta M; Tansy AP; Stanley CM; Astafiev SV; Snyder AZ; Shulman GL
    Neuropsychologia; 2005; 43(14):2041-56. PubMed ID: 16243051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Category-specific organization of prefrontal response-facilitation during priming.
    Bunzeck N; Schütze H; Düzel E
    Neuropsychologia; 2006; 44(10):1765-76. PubMed ID: 16701731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Right temporal-parietal junction engagement during spatial reorienting does not depend on strategic attention control.
    Natale E; Marzi CA; Macaluso E
    Neuropsychologia; 2010 Mar; 48(4):1160-4. PubMed ID: 19932706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI.
    Liu X; Banich MT; Jacobson BL; Tanabe JL
    Neuroimage; 2004 Jul; 22(3):1097-106. PubMed ID: 15219581
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.