BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 20101205)

  • 41. CTCF and BORIS regulate Rb2/p130 gene transcription: a novel mechanism and a new paradigm for understanding the biology of lung cancer.
    Fiorentino FP; Macaluso M; Miranda F; Montanari M; Russo A; Bagella L; Giordano A
    Mol Cancer Res; 2011 Feb; 9(2):225-33. PubMed ID: 21325284
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CTCF demarcates chicken embryonic α-globin gene autonomous silencing and contributes to adult stage-specific gene expression.
    Valdes-Quezada C; Arriaga-Canon C; Fonseca-Guzmán Y; Guerrero G; Recillas-Targa F
    Epigenetics; 2013 Aug; 8(8):827-38. PubMed ID: 23880533
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcriptional and epigenetic regulation of the p53 tumor suppressor gene.
    Saldaña-Meyer R; Recillas-Targa F
    Epigenetics; 2011 Sep; 6(9):1068-77. PubMed ID: 21814038
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Estrogen-mediated epigenetic repression of the imprinted gene cyclin-dependent kinase inhibitor 1C in breast cancer cells.
    Rodriguez BA; Weng YI; Liu TM; Zuo T; Hsu PY; Lin CH; Cheng AL; Cui H; Yan PS; Huang TH
    Carcinogenesis; 2011 Jun; 32(6):812-21. PubMed ID: 21304052
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gene-specific repression of the p53 target gene PUMA via intragenic CTCF-Cohesin binding.
    Gomes NP; Espinosa JM
    Genes Dev; 2010 May; 24(10):1022-34. PubMed ID: 20478995
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel CTCF binding at a site in exon1A of BCL6 is associated with active histone marks and a transcriptionally active locus.
    Batlle-López A; Cortiguera MG; Rosa-Garrido M; Blanco R; del Cerro E; Torrano V; Wagner SD; Delgado MD
    Oncogene; 2015 Jan; 34(2):246-56. PubMed ID: 24362533
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes of the nucleolus architecture in absence of the nuclear factor CTCF.
    Hernández-Hernández A; Soto-Reyes E; Ortiz R; Arriaga-Canon C; Echeverría-Martinez OM; Vázquez-Nin GH; Recillas-Targa F
    Cytogenet Genome Res; 2012; 136(2):89-96. PubMed ID: 22286186
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The dual specificity phosphatase 2 gene is hypermethylated in human cancer and regulated by epigenetic mechanisms.
    Haag T; Richter AM; Schneider MB; Jiménez AP; Dammann RH
    BMC Cancer; 2016 Feb; 16():49. PubMed ID: 26833217
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Epigenetic modifications, chromatin distribution and TP53 transcription in a model of breast cancer progression.
    Santos GC; da Silva AP; Feldman L; Ventura GM; Vassetzky Y; de Moura Gallo CV
    J Cell Biochem; 2015 Apr; 116(4):533-41. PubMed ID: 25358520
    [TBL] [Abstract][Full Text] [Related]  

  • 50. p53 induces distinct epigenetic states at its direct target promoters.
    Vrba L; Junk DJ; Novak P; Futscher BW
    BMC Genomics; 2008 Oct; 9():486. PubMed ID: 18922183
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome-wide targeting of the epigenetic regulatory protein CTCF to gene promoters by the transcription factor TFII-I.
    Peña-Hernández R; Marques M; Hilmi K; Zhao T; Saad A; Alaoui-Jamali MA; del Rincon SV; Ashworth T; Roy AL; Emerson BM; Witcher M
    Proc Natl Acad Sci U S A; 2015 Feb; 112(7):E677-86. PubMed ID: 25646466
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Epigenetic silencing of the p16(INK4a) tumor suppressor is associated with loss of CTCF binding and a chromatin boundary.
    Witcher M; Emerson BM
    Mol Cell; 2009 May; 34(3):271-84. PubMed ID: 19450526
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Setting and resetting of epigenetic marks in malignant transformation and development.
    Richly H; Lange M; Simboeck E; Di Croce L
    Bioessays; 2010 Aug; 32(8):669-79. PubMed ID: 20658705
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel mechanism for CTCF in the epigenetic regulation of Bax in breast cancer cells.
    Méndez-Catalá CF; Gretton S; Vostrov A; Pugacheva E; Farrar D; Ito Y; Docquier F; Kita GX; Murrell A; Lobanenkov V; Klenova E
    Neoplasia; 2013 Aug; 15(8):898-912. PubMed ID: 23908591
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells.
    Steiner LA; Schulz V; Makismova Y; Lezon-Geyda K; Gallagher PG
    PLoS One; 2016; 11(5):e0155378. PubMed ID: 27219007
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Epigenetic dysregulation by nickel through repressive chromatin domain disruption.
    Jose CC; Xu B; Jagannathan L; Trac C; Mallela RK; Hattori T; Lai D; Koide S; Schones DE; Cuddapah S
    Proc Natl Acad Sci U S A; 2014 Oct; 111(40):14631-6. PubMed ID: 25246589
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Tox21 Approach to Altered Epigenetic Landscapes: Assessing Epigenetic Toxicity Pathways Leading to Altered Gene Expression and Oncogenic Transformation In Vitro.
    Parfett CL; Desaulniers D
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28587163
    [TBL] [Abstract][Full Text] [Related]  

  • 58. REST: transcriptional and epigenetic regulator.
    Bithell A
    Epigenomics; 2011 Feb; 3(1):47-58. PubMed ID: 22126152
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aberrant epigenetic regulation of bromodomain BRD4 in human colon cancer.
    Rodriguez RM; Huidobro C; Urdinguio RG; Mangas C; Soldevilla B; Domínguez G; Bonilla F; Fernandez AF; Fraga MF
    J Mol Med (Berl); 2012 May; 90(5):587-95. PubMed ID: 22120039
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Epigenetic changes in tumor microenvironment.
    Dey P
    Indian J Cancer; 2011; 48(4):507-12. PubMed ID: 22293269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.