BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 20101242)

  • 1. Prevalent positive epistasis in Escherichia coli and Saccharomyces cerevisiae metabolic networks.
    He X; Qian W; Wang Z; Li Y; Zhang J
    Nat Genet; 2010 Mar; 42(3):272-6. PubMed ID: 20101242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epistatic interaction maps relative to multiple metabolic phenotypes.
    Snitkin ES; Segrè D
    PLoS Genet; 2011 Feb; 7(2):e1001294. PubMed ID: 21347328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The causes of epistasis in genetic networks.
    Macía J; Solé RV; Elena SF
    Evolution; 2012 Feb; 66(2):586-96. PubMed ID: 22276550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic interaction networks mediate individual statin drug response in
    Busby BP; Niktab E; Roberts CA; Sheridan JP; Coorey NV; Senanayake DS; Connor LM; Munkacsi AB; Atkinson PH
    NPJ Syst Biol Appl; 2019; 5():35. PubMed ID: 31602312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epistatic interactions among metabolic genes depend upon environmental conditions.
    Jagdishchandra Joshi C; Prasad A
    Mol Biosyst; 2014 Oct; 10(10):2578-89. PubMed ID: 25018101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variance in epistasis links gene regulation and evolutionary rate in the yeast genetic interaction network.
    Fierst JL; Phillips PC
    Genome Biol Evol; 2012; 4(11):1080-7. PubMed ID: 23019067
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity and epistasis strongly affect bacterial fitness after losing multiple metabolic genes.
    D'Souza G; Waschina S; Kaleta C; Kost C
    Evolution; 2015 May; 69(5):1244-54. PubMed ID: 25765095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of response-modulated genetic interactions by sensitivity-based epistatic analysis.
    Batenchuk C; Tepliakova L; Kaern M
    BMC Genomics; 2010 Sep; 11():493. PubMed ID: 20831804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imputing and predicting quantitative genetic interactions in epistatic MAPs.
    Ryan C; Cagney G; Krogan N; Cunningham P; Greene D
    Methods Mol Biol; 2011; 781():353-61. PubMed ID: 21877290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative genetic analysis in Saccharomyces cerevisiae using epistatic miniarray profiles (E-MAPs) and its application to chromatin functions.
    Schuldiner M; Collins SR; Weissman JS; Krogan NJ
    Methods; 2006 Dec; 40(4):344-52. PubMed ID: 17101447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism.
    McDonald JP; Levine AS; Woodgate R
    Genetics; 1997 Dec; 147(4):1557-68. PubMed ID: 9409821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of the transcription-factor gene regulatory networks of E. coli and S. cerevisiae.
    Guzmán-Vargas L; Santillán M
    BMC Syst Biol; 2008 Jan; 2():13. PubMed ID: 18237429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated approach to characterize genetic interaction networks in yeast metabolism.
    Szappanos B; Kovács K; Szamecz B; Honti F; Costanzo M; Baryshnikova A; Gelius-Dietrich G; Lercher MJ; Jelasity M; Myers CL; Andrews BJ; Boone C; Oliver SG; Pál C; Papp B
    Nat Genet; 2011 May; 43(7):656-62. PubMed ID: 21623372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic epistasis under varying environmental perturbations.
    Barker B; Xu L; Gu Z
    PLoS One; 2015; 10(1):e0114911. PubMed ID: 25625594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.
    Sato TK; Tremaine M; Parreiras LS; Hebert AS; Myers KS; Higbee AJ; Sardi M; McIlwain SJ; Ong IM; Breuer RJ; Avanasi Narasimhan R; McGee MA; Dickinson Q; La Reau A; Xie D; Tian M; Reed JL; Zhang Y; Coon JJ; Hittinger CT; Gasch AP; Landick R
    PLoS Genet; 2016 Oct; 12(10):e1006372. PubMed ID: 27741250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-supervised prediction of gene regulatory networks using machine learning algorithms.
    Patel N; Wang JT
    J Biosci; 2015 Oct; 40(4):731-40. PubMed ID: 26564975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpreting patterns of gene expression: signatures of coregulation, the data processing inequality, and triplet motifs.
    Ku WL; Duggal G; Li Y; Girvan M; Ott E
    PLoS One; 2012; 7(2):e31969. PubMed ID: 22393375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HiNO: an approach for inferring hierarchical organization from regulatory networks.
    Hartsperger ML; Strache R; Stümpflen V
    PLoS One; 2010 Nov; 5(11):e13698. PubMed ID: 21079808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome evolution predicts genetic interactions in protein complexes and reveals cancer drug targets.
    Lu X; Kensche PR; Huynen MA; Notebaart RA
    Nat Commun; 2013; 4():2124. PubMed ID: 23851603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A global genetic interaction network maps a wiring diagram of cellular function.
    Costanzo M; VanderSluis B; Koch EN; Baryshnikova A; Pons C; Tan G; Wang W; Usaj M; Hanchard J; Lee SD; Pelechano V; Styles EB; Billmann M; van Leeuwen J; van Dyk N; Lin ZY; Kuzmin E; Nelson J; Piotrowski JS; Srikumar T; Bahr S; Chen Y; Deshpande R; Kurat CF; Li SC; Li Z; Usaj MM; Okada H; Pascoe N; San Luis BJ; Sharifpoor S; Shuteriqi E; Simpkins SW; Snider J; Suresh HG; Tan Y; Zhu H; Malod-Dognin N; Janjic V; Przulj N; Troyanskaya OG; Stagljar I; Xia T; Ohya Y; Gingras AC; Raught B; Boutros M; Steinmetz LM; Moore CL; Rosebrock AP; Caudy AA; Myers CL; Andrews B; Boone C
    Science; 2016 Sep; 353(6306):. PubMed ID: 27708008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.