BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 20101242)

  • 21. Network of epistatic interactions within a yeast snoRNA.
    Puchta O; Cseke B; Czaja H; Tollervey D; Sanguinetti G; Kudla G
    Science; 2016 May; 352(6287):840-4. PubMed ID: 27080103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The genetic landscape of a cell.
    Costanzo M; Baryshnikova A; Bellay J; Kim Y; Spear ED; Sevier CS; Ding H; Koh JL; Toufighi K; Mostafavi S; Prinz J; St Onge RP; VanderSluis B; Makhnevych T; Vizeacoumar FJ; Alizadeh S; Bahr S; Brost RL; Chen Y; Cokol M; Deshpande R; Li Z; Lin ZY; Liang W; Marback M; Paw J; San Luis BJ; Shuteriqi E; Tong AH; van Dyk N; Wallace IM; Whitney JA; Weirauch MT; Zhong G; Zhu H; Houry WA; Brudno M; Ragibizadeh S; Papp B; Pál C; Roth FP; Giaever G; Nislow C; Troyanskaya OG; Bussey H; Bader GD; Gingras AC; Morris QD; Kim PM; Kaiser CA; Myers CL; Andrews BJ; Boone C
    Science; 2010 Jan; 327(5964):425-31. PubMed ID: 20093466
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Array-based synthetic genetic screens to map bacterial pathways and functional networks in Escherichia coli.
    Babu M; Gagarinova A; Emili A
    Methods Mol Biol; 2011; 781():99-126. PubMed ID: 21877280
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modular epistasis and the compensatory evolution of gene deletion mutants.
    Rojas Echenique JI; Kryazhimskiy S; Nguyen Ba AN; Desai MM
    PLoS Genet; 2019 Feb; 15(2):e1007958. PubMed ID: 30768593
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of the small molecule metabolic enzymes of Escherichia coli and Saccharomyces cerevisiae.
    Jardine O; Gough J; Chothia C; Teichmann SA
    Genome Res; 2002 Jun; 12(6):916-29. PubMed ID: 12045145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epistatic relationships reveal the functional organization of yeast transcription factors.
    Zheng J; Benschop JJ; Shales M; Kemmeren P; Greenblatt J; Cagney G; Holstege F; Li H; Krogan NJ
    Mol Syst Biol; 2010 Oct; 6():420. PubMed ID: 20959818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae.
    Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W
    World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of metabolic engineering targets through analysis of optimal and sub-optimal routes.
    Soons ZI; Ferreira EC; Patil KR; Rocha I
    PLoS One; 2013; 8(4):e61648. PubMed ID: 23626708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inferring modulators of genetic interactions with epistatic nested effects models.
    Pirkl M; Diekmann M; van der Wees M; Beerenwinkel N; Fröhlich H; Markowetz F
    PLoS Comput Biol; 2017 Apr; 13(4):e1005496. PubMed ID: 28406896
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Power graph compression reveals dominant relationships in genetic transcription networks.
    Ahnert SE
    Mol Biosyst; 2013 Nov; 9(11):2681-5. PubMed ID: 23963601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The metabolic background is a global player in Saccharomyces gene expression epistasis.
    Alam MT; Zelezniak A; Mülleder M; Shliaha P; Schwarz R; Capuano F; Vowinckel J; Radmanesfahar E; Krüger A; Calvani E; Michel S; Börno S; Christen S; Patil KR; Timmermann B; Lilley KS; Ralser M
    Nat Microbiol; 2016 Feb; 1():15030. PubMed ID: 27572163
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A systems-biology approach to modular genetic complexity.
    Carter GW; Rush CG; Uygun F; Sakhanenko NA; Galas DJ; Galitski T
    Chaos; 2010 Jun; 20(2):026102. PubMed ID: 20590331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hierarchical organization of fluxes in Escherichia coli metabolic network: using flux coupling analysis for understanding the physiological properties of metabolic genes.
    Hosseini Z; Marashi SA
    Gene; 2015 May; 561(2):199-208. PubMed ID: 25688882
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recursive expectation-maximization clustering: a method for identifying buffering mechanisms composed of phenomic modules.
    Guo J; Tian D; McKinney BA; Hartman JL
    Chaos; 2010 Jun; 20(2):026103. PubMed ID: 20590332
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CSN: unsupervised approach for inferring biological networks based on the genome alone.
    Galili M; Tuller T
    BMC Bioinformatics; 2020 May; 21(1):190. PubMed ID: 32414319
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modular epistasis in yeast metabolism.
    Segrè D; Deluna A; Church GM; Kishony R
    Nat Genet; 2005 Jan; 37(1):77-83. PubMed ID: 15592468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genomic analysis of the hierarchical structure of regulatory networks.
    Yu H; Gerstein M
    Proc Natl Acad Sci U S A; 2006 Oct; 103(40):14724-31. PubMed ID: 17003135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elimination of glycerol production in anaerobic cultures of a Saccharomyces cerevisiae strain engineered to use acetic acid as an electron acceptor.
    Guadalupe Medina V; Almering MJ; van Maris AJ; Pronk JT
    Appl Environ Microbiol; 2010 Jan; 76(1):190-5. PubMed ID: 19915031
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of metabolic fluxes from gene expression data with Huber penalty convex optimization function.
    Zhang SW; Gou WL; Li Y
    Mol Biosyst; 2017 May; 13(5):901-909. PubMed ID: 28338129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetics. The DNA damage road map.
    Friedman N; Schuldiner M
    Science; 2010 Dec; 330(6009):1327-8. PubMed ID: 21127235
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.